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Abstract

This research investigated the applicability of agent-besetbat simulations to
real-world combat operations. An agent-based simulatidihe Allied offensive search
for German U-Boats in the Bay of Biscay during World Wawas constructed,
extending the state-of-the-art in agent-based combatagions, bridging the gap
between the current level of agent-like combat sinariatand the concept of agent-
based simulations found in the broader literature. Tbpgsed simulation advances

agent-based combat simulations to “validateable” misteie@l military operations.

Simulation validation is a complex task with numeraligerse techniques
available and levels of validation differing significgndimong simulations and
applications. This research presents a verificatimhvalidation taxonomy based on face
validity, empirical validity, and theoretical valigi extending the verification and
validation knowledge-base to include techniques specific to dgeed models. The

verification and validation techniques are demonstrat@dBay of Biscay case study.

Validating combat operations pose particular problems dtietmfrequency of
real-world occurrences to serve as simulation vabaatases; often just a single
validation comparison can be made. This means comparisdhe underlying
stochastic process are not possible without signifikestof statistical confidence. This
research also presents a statistical validation metbhgglbased on re-sampling historical
outcomes, which when coupled with the traditional nonpataosign test, allows
comparison between a simulation and historic operationiding an improved

validation indicator beyond the single pass or fal.te
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DEVELOPMENT APPROACHES COUPLED WITH VERIFICATION
AND VALIDATION METHODOLOGIES FOR AGENT-BASED

MISSION-LEVEL ANALYTICAL COMBAT SIMULATIONS

I. Introduction

1.1 Introduction

The United States Department of Defense (DoD) is the largest user of modeling
and simulation (M&S) applications in the world [Balci, 2001; Balci and Ormsby, 2002].
Though the first agent-like combat model appeared as a cellular automata simulation in
[Woodcock,et al, 1988], agent-based combat simulation remains a relatively new and
unexplored tool available to the DoD analytic community, but interest in this area has
been increasing. This research extends agent-based simulation theory and knowledge and
develops methodologies for DoD use of agent-based simulations. The intent is not to
advocate wholesale adoption of agent-based simulations for the study of combat. Instead,
the intent of this research is to conduct an initial, thorough investigation into their
viability and develop methodologies and tools necessary for their proper application in

combat analyses, particularly at higher levels of model aggregation.

An immediate question is what motivates undertaking this research? Human
behavior significantly impacts the outcome of actual combat. However, removing the

variability associated with the individual decisions within a heterogeneous group of



combatants has long been the practice of the militargteling and analytic community
[Koopman, 1970]. The legacy models used by the DoD, thexdfnt to model and to
capture the effects of diverse human behavior, known grtienmilitary analytical
community as the intangibles [Bergeman, 2001]. As dtrébare are many important
aspects of combat that remain unexplored, their effeidden from the military analyst
and, ultimately, decision makers who use the modelinghtsjgrovided by the military

analyst.

Outside the military analytical community, some afg¢l same issues are being
addressed through a relatively new modeling paradigm, ageetlsimulation. A wide
variety of fields including artificial life [Levy, 19924rtificial intelligence (Al) [Russell
and Norvig, 1995], and social sciences [Holland, 1995; Axelrod aheit; 2000] have
employed the tools of what has become agent-basedasiomd to investigate some of

the dynamic effects of heterogeneous behavior.

As a tool for military decision makers, agent-basedlmimnsimulations similarly
offer potential for exploring the impact of many aspedtsuman behavior on
effectiveness in combat operations - insight beyondd¢bee of the established
simulations due to the assumptions that homogenize comibaigaats and their
behavior. Therefore, as a result of the successfiicapipn of agent-based simulations
in other fields, interest in agent-based simulatisrgrowing within the military M&S
community. Champagne (2001c) details current issues in mgdelman behavior

specific to combat analysis with emphasis on agentdbaeeleling.



However, the majority of the research into agenetiaystems is not directly
applicable to modeling combat. The majority of the worthafield concentrates on
cooperative agents [Sycara, 1998]. By their very naturebabsimulations are
constructed to explore the effect of conflict. Assufe the academic literature exploring

agent-based combat simulations is notably sparse.

Moreover, in spite of the potential for improved insigitb the mechanisms of
combat, the vast majority of the work in the areaarhbative agents has been in
simulating small, toy problems and elementary scen#naidlittle reflect real-world
combat. Project Albert, a U.S. Marine Corps (USM@)jgut dedicated to the
advancement of agent-based simulations, refers tdaated-the-art in agent-based
combat simulations as “an intellectual sandbox” inchitthe most basic problems are

explored through rudimentary scenarios [Widdowson, 2001].

In order to become a more relevant tool, agent-basadations must
demonstrate applicability on real-world scenarios beyamg@le small force,
engagement-level models. However, there remain adfidsgues that must be studied
before this can become a practical reality. A printargstion is whether or not these
agent-based methods are applicable to modeling missionsieserios. In making this
determination, criteria must be developed to establish ‘gbad enough” means for
agent-based simulations. In fact, as the sheer voddwmerification and validation
literature attests, determination of what it meansafsimulation to be “good enough”

remains a serious issue for all combat simulationdsandt unique to agent-based



simulations. Modeling in an agent-based paradigm does-amid-of-itself cause this

issue to disappear.

One ultimate goal of agent-based simulations is to praagabilities to capture
better the variability associated with human behaviéus intrinsic problem in this goal
is the lack of methodology for quantifying the charactiessgoverning human behavior.
If agent-based simulations are to provide combat maglelih in-roads into the
behavioral aspects of combat, agent-based modeleracaae: With developing
scientifically defensible decision-making algorithms tdechwithin the agents in these

combat simulations.

1.2 DoD Simulations

As the world’s largest user of modeling and simulationiegpbns [Balci, 2001,
Balci and Ormsby, 2002], the DoD has numerous types oflatimns available, ranging
from full live-fire exercises to virtual training environmemb completely computerized
simulations. Additionally, the DoD is becoming adephtggrating their simulation
environments, thus providing aggregated simulations containingraadlyof the above
types of simulations. This research is focused on aateiglcomputerized simulations,

commonly called constructive models.

1.2.1 Constructive Simulation Classification

The DoD generally classifies its constructive modetils categories based on
their level of data aggregation and their scope. Tygicdlere are five recognized

model categories: engineering, engagement, mission, camfmitheater), and macro-



levels (see Figure 1.1). The scope and level of data agigregee highly correlated,
and generally speaking, the broader the scope of the nioelgireater the level of data
aggregation. Furthermore, data from lower-level modelganerally aggregated to
provide data to higher-level models. Figure 1.1 and the aceosmgadiscussion have
been frequently presented in DoD simulation briefimgduiding [ASC/XREWS, 1992;

AFSAA, 2000; Champagne, 2000].
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Figure 1.1 Modeling pyramid with representative models

Figure 1.1 depicts the DoD modeling pyramid for constructiedets and the
associated categories. As the categories move ygythmid, the level of detail modeled

decreases; the amount of data aggregation increasettieastbpe of the models



increase. For readers familiar with DoD constructhaxlels, specific examples are

indicated at their respective levels within the pyrafoidadded context.

Each model within the engineering-level of the pyramgpiscific to a single
system or event. The data and model specificationgesrerally highly detailed and
grounded primarily in scientific and physical laws and prigpgr An example of this
type of model is a finite element model of an airfraon@ detailed simulation of a
missile’s flight profile. The results of the modedwd be highly detailed as well and
may include stresses on every element over timegitt fharameters at each of many

very small time increments.

The level above engineering contains the engagementA®asdls, typically
described as “few-on-few.” Data in engagement-level riscale less detailed than in the
engineering models, while the amount of aggregation isasece An example of an
engagement-level model might be a simulation of esof four aircraft attacking a
defended target. In such a simulation, the flight patdar cross-sections, and weapon
trajectories would still be highly detailed, but the dgenaomputations are generally not
computed in detail. Instead, the results of engineerindefare usually aggregated to
provide probabilities of damage given particular simulationditions using techniques

such as look-up tables or probability curves.

Mission-level models occupy the third tier of DoD coustive simulations, and
these are often called “many-on-many” models. A typitasion-level model may
simulate the air-to-ground engagements on the first daysohulated conflict. Again,

the results of engagement-level models may be aggregapedvide inputs to these



mission-level models. For example, an engagement noodedme of some strike
package attacking a defended target may be summarized atedxpgicomes in the

mission-level model.

Campaign-level models are highly aggregated. Such modsi€mploy a
playing field that comprises an entire country and maylsite days, months, or even
years of combat. Furthermore, these models most siiteulate joint or combined
service activities in the region. Almost all such nmedese data aggregated from one or
more of the models found lower on the pyramid as inpyps;dlly providing various

effectiveness data.

Macro-level models occupy the top tier on the modelyramid, and these
models typically contain the most aggregated conceptuadéln@and supporting data.
These tend to be special-purpose or spreadsheet-type mastkts @stimate force level
trends. These are not as widely used (or acceptek¢ asadels comprising the four
lower levels due to the many overly-broad assumptionsseacgto reduce campaign-
level combat to a few number of spreadsheet calca&tidblacro-level models tend to be
very specialized models, functioning in many cases asdemdorm of the “back-of-
the-envelope” analysis. A typical use may include idieation of potentially promising
scenarios to study using a more extensive campaign-liewelesion or determining a

rough estimate of a desired weapons system fleet size.

The current state-of-the-art with respect to agentdbasmbat simulations
resides in the area of the engagement-level models.mbist advanced of these

simulations involve small numbers of combatants andt $inee spans. However, unlike



the legacy models occupying this tier of the modeling pydlathe agent-based combat
models do not use detailed data and do not provide a methgdotoglidating their
results against real-world scenarios. Linking resudisifagent-based combat

simulations to the real-world remains an elusive tagetilitary analysts.

1.2.2 Agent-Based Simulation

Software agents are autonomous entities (objects)naatkirtual environment
and are an outgrowth of the Object Oriented (OO) soéwasign paradigm.
Agent-based programming holds many of the promises of OQrjesich as reusability
and ease of maintenance. Additionally, agents havedfe®m to be particularly
advantageous on open and distributed systems [Sycara, 18$8jt-based software has
a strong emphasis in the recent literature and hassoeeerssfully employed in many
different environments and for many differing purposes. Ageased simulations are

stochastic models with software agents comprising aliedf the model.

Though the employment methods of agent-based simuladioa their roots in
OO design, the concepts grew from early work in thddief artificial life and artificial
intelligence (Al). These fields are primarily conasairwith entity behavior and entity
interaction rather than with the performance of dipaear system. That is not to say
system-level performance is not of interest; instéa& system-level performance is a
phenomenon growing out of individual behaviors and intenastrather than the focus of
model construction. This bottom-up focus is a real panadigift for most simulation

modelers.



Traditional modeling methods use a top-down approach Idibgia system-level
model. Assumptions are made about how the system wadst,often taking the form
of quantitative or logical relationships that then magehe conceptual model of how the
system behaves [Law and Kelton, p. 5, 1991]. Agent-basedasion, on the other
hand, is primarily concerned with the behavior of thities that make up the system.
Assumptions about the behavior of these entities wélparticular system constitute
agent-models, which then act within a specific environm8&ygstem level behavior
emerges from the actions, or inactions, of the var@asnts within the environment. In

this way, agent-based simulation is a bottom-up appraasystem model development.

To distinguish between system-level specification andrgent system
behaviors, consider the following. Law and Kelton (p. 106-1091) describe a bank
modeling process in which “one might collect interarrivialles...” to specify
interarrival-time distributions for the model. In sug model, the simulation would
explicitly specify a distribution for entity arrivaldn Chapter IV, this research presents
an agent-based model where the agent-arrival times\amergent phenomenon derived
from the agent behaviors. Though this emergent systbavioe conforms to historical

assumptions about the system, it is not a predetermysiens specification.

The emergence of system-level behaviors from the ictieraof individual
entities is one of the defining characteristics of adpased systems, a phenomenon
known as emergent behavior [Holland, 1995; Russell and Norvig, 28@%od and
Cohen, 2000; Bonabeau, 2002]. Specifically, emergent behaggstsm-level

behavior, not specifically programmed into the simulatiesulting from the behavior of



entities within the system. In complex system ansylyghere system-level outcomes are
highly dependent on entity interaction, agent-based atiouk are being used to
discover the mechanisms of individual behaviors thaiterer avoid specific emergent

behavior [Levy, 1992; Holland, 1995; James, 1996; Axelrod and C2@0Be0].

An attractive feature of emergent behavior is thaltaiva models to capture
known behavior that generally defies analytical explanatFor example, as described
in Bonabeau (2002), one agent-based model's emergent betlenionstrated Braess’
paradox, which describes the counterintuitive worseningaéffid congestion when an
extra lane is added to a transportation network. An dggeged model can also augment
theoretical results by extension beyond the limitatiofithe theory. For example,
Champagnegt al, (2003) and Carl (2003) replicated theoretical search rebultshen
extended search theory to include overlapping search, whkitionstrated that the
overlapping search could produce better results thanahe efficient, non-overlapping

search.

Agent-based simulations have recently emerged as aofargarest in the arena
of combat modeling. The autonomous nature of softwanetagéses them a natural
niche in the distributed models used for wargaming and miainAdditionally, the ability
to encapsulate the behavior mechanisms for each agéin thie object suggests that
this paradigm offers a chance to study the effects ofiohal behaviors on combat
effectiveness, aspects of combat not captured previousbnstructive simulations used

for combat analysis [llachinski, 2000].
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This method of creating combat participants suggestshbaftects of individual
behaviors can be studied. Similarly, the literature ssiggéat the effect of the value
systems of the combatants on the outcome of coarbatow open for study by the
military analyst. Therefore, agent-based combat Isinanspromiseto allow
unprecedented insight into factors governing the outcomeothat have been
inaccessible previously, other than in doctrinal musingss agent-based paradigm
promise will only be realized once the nuances of compant-based modeling are

investigated, understood, and appropriately applied.

1.3 Research Goal

This research was funded by the Defense Modeling and Siomut@ffice
(DMSO) and the Air Force Research Laboratory/Hum#@cEveness Directorate
(AFRL/HES) to investigate the possibility of advancing stete-of-the-art in agent-
based combat modeling on several fronts. In support ofdlaik various objectives were

established. Those objectives are discussed below.

1.3.1 Establishing the Background and Supporting Work

Military analysts are increasingly looking for insgioas from the fields of Chaos
and Complexity as they search for additional tools to stactprs governing combat
effectiveness. Work in Al, artificial life, and cotep adaptive systems (CAS) suggests
that many effects influenced by human behavior can be sfighgssodeled using
agent-based simulations. As a result, agent-basedasiorumay provide insight to

crucial aspects of combat not currently modeled by thecke models. Champagne
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(2001a) traces work in these fields of Chaos, Compleaity artificial life as they
pertain to modeling combat as a CAS, and Champagne (200&d3$ tetues in

organizational and human behavior relevant to combat iingdel

1.3.2 Extend Agent-Based Combat Simulations to the Missionelvel

Agent-based combat simulations to date generally siuffer a failure to connect
the modeled scenarios to real-world combat scenalfiibs.vast majority of agent-based
combat modeling has focused on rudimentary scenariosagedyi broad extrapolation of
insights to more complex scenarios [Widdowson, 2001]. Theuege efforts are
providing some useful analytical insights into combedad acceptance of analytical
insights will come only when these models prove to Ipalske of providing relevant
insights into more substantial real-world situationfisTesearch proposes to extend the
agent-based modeling paradigm to model a WW 1l combat agerafhe purpose of
this is to extend the state-of-the-art in agent-basetbat simulations to encompass the

mission-level of the modeling pyramid (Figure 1.1).

With respect to this research objective, specific doutions of this work include:
definition and demonstration of a mission-level ageted modeling tool and a
methodological approach to defining and building an agendbaselel based on

historical combat.

1.3.3 Develop Validation Methods for Agent-Based Combat Simuliains

In extending agent-based combat simulations into teiom-level of modeling,

techniques for determining the extent of model correctaessrucial in developing
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useful applications. This research extends veribicadind validation (V&V) techniques
to agent-based simulations. This includes developingaatemy for V&V techniques
currently absent from the simulation literature ad a®la quantitative methodology for

assessing agent-based model validity.

With respect to this research objective, specific doutions of this work include:
development of a taxonomy for both verification anticegion treating each component
as a separate, but related, function in a comprehepicess; and extending the

verification and validation taxonomy to accommodajera-based models.

1.3.4 Demonstration of Methods via Known Use-Case

In pulling together the results from the above resear@himportant to
demonstrate agent-based techniques through the developnaemission-level model
reflecting a relevant real-world military scenariohefefore, another objective of this
research is to develop a scenario based on the Alliedsifie search for U-Boats in the
Bay of Biscay during World War Il. The Bay of Biscayemt-based simulation is then
used as the basis for experimentation in support ohderetical work advanced through

this research.

While there have been historical studies using agent-lsasedations, primarily
under Project Albert, little scientific rigor has begplked to: 1) determining and
parameterizing the underlying behaviors; 2) researching thel padeneterizations
required for historical accuracy; and 3) quantifying theiceficy of the model behavior

with respect to the historical record. Such rigor mustdtablished for agent-based
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combat simulation to gain a respected foothold in tHigamy modeling and simulation

community.

With respect to this research objective, specific doumtions of this work include:
encapsulation of an historic combat scenario intagant-based model; demonstration of
extended verification and validation taxonomy; and detnatisn of statistical methods

useful for assessing model behaviors.

1.4 Contributions of this Research
This research makes several contributions, whichuaresrized below.

The state-of-the-art in agent-based combat simul@iestablished through a
comprehensive review of the literature. This review delewthe strengths and potential
weaknesses of agent-based models particularly as compdegraty modeling

approaches.

In extending agent-based simulation techniques to the mitsiel, agent-based
combat simulations are extended to address real-wlitéry scenarios. In showing the
veracity of the proposed simulation, additional contiitns are made to simulation
V&V. Primarily, a taxonomy of verification and valitan techniques is developed, to
include methods of validating agent-based simulations, atpmlibanalysis techniques
were extended to incorporate the validation of emergemaor in the agent-based

model.

Finally, a novel statistical validation methodology waseloped to determine

model veracity with respect to the stochastic procedsnlying the real-world combat

14



operations. The technique combines two nonparametric tpas)ithe bootstrapping
and sign test, to enhance the information availablaugirohe use of more traditional

methods such as the t-test.

1.5 Sequence of Presentation

The remainder of this document is comprised of five chapt€hapter I
provides the necessary background on the agent-based modedidgypaand reviews
the relevant literature concerning agent-based combatasioru Chapter Ill reviews the
V&YV literature and presents a new taxonomy of V&V tecjugis and a methodological
approach for applying these techniques within a modeling andasioruprocess. This
includes extensions to agent-based models. Chapter IVsdéitlevelopment,
verification, and validation of the Bay of Biscay agased simulation. Additionally, a
basis for extension of this historical scenario intmarn national security scenarios is
presented. Chapter V develops a new statistical apptoaetidation of combat
simulations based on historical data. Finally, Chagtessummarizes the contributions of

this research and proposes areas for future efforts.
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ll. Agent-Based Simulation

Agent-based software is a natural extension of thecbbjgented paradigm.
Agents are generally objects that extend the concepbdtilarity to the point where the
objects behave as autonomous entities. Therefore sagena subset of objects, and
while agents are objects, not all objects are agentseder, having their behavioral
methodology internal to themselves, agents provide atemnetaphor for natural
systems. In a combat scenario, it is easy to enviself-encapsulated software objects

(agents) representing the combatants.

The power of agent-based software comes from theyabiligents to interact
with other agents as they seek to fulfill their intergadls. When there are many
interactions between agents, the system often exbiigsgent behaviors typical of
Complex systems. Emergent behavior is system behawi@pecifically programmed
(intended or unintended). Moreover, being self-contaitiexlagents are extremely well
suited for operating in open and distributed systemsh Bbthese properties receive

more detailed attention in the subsequent sectiottisothapter.

This chapter defines the terms “agent” and “agent-basadagion.” Relevant
background to agent-based systems is provided through examiiiediterature.
Finally, the state-of-the-art with respect to agersteldacombat simulation is presented,
highlighting deficiencies within past agent-based approdtiasare addressed in this

research effort.
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2.1 Agent Defined

Within agent-based programming, the term “agent” has undergdurring of
definition and has become somewhat ambiguous in moddmeasefterminology
[Sycara, 1998]. As more research funding goes toward agsatitbtechnologies, the
natural tendency for researchers is to broaden artdrstre definition of an agent to
increase their chances for funding [Hendler, 1999]. Thesetft is important to clarify

what is meant by “agent” before discussing how thewtiti an agent-based simulation.

Agents have been written about in the literature dinedate 1980s and represent
hardware, software, or some combination, existing thiateracting with a real or
artificial environment. In its most basic definitiom agent is defined as anything
capable of perceiving its environment and acting upon thateemgnt [Russell and
Norvig, 1995]. Such a broad definition means a host of Siie#academic communities
can use “agents” in their research, resulting in ausdah of terminologies and multiple
research area threads that tend to blend together [g¢te@8B9]. Indeed, under this
broad categorization, there can be little distincbhetween simulation entities common
in discrete event simulations (DES) and more recentepts of agents found in the

literature.

In this research, the definition of agents is mortriotse and mirrors the
consensus of the agent-based systems literature reBeigrch concentrates on
constructive simulations (i.e. completely computerig@aulation environments), thus an
agent is limited in this context to a software entifn agent, therefore, is a software

system, situated in some environment, capable of flexiienamous action to meet its
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design goals within that environment [Jennirgsal, 1998]. This definition contains
three key characteristics: situated, autonomous, axiblle These characteristics

provide the distinction between agents and other softersdiges.

Situatedrequires the agent to receive sensory input about theoament.
Moreover, the agent must be able to affect this envirabhtheough its actions. Since
agents are capable of both sensing and affecting their amarmt, many other Al
configurations, such as expert systems, are precluded fromdlassified as agents

[Russell and Norvig, 1995; Jennings$,al, 1998].

Autonomyrequires that the agent should be capable of acting withieaat,
outside intervention. More specifically, agents hidner own independent thread of
control [Jenningset al, 1998], so the agent should have control over its oworecand
internal states. Autonomy is the characteristit pinavides differentiation between

“objects” and “agents.”

Flexibility is the final characteristic differentiating agentsnirother software
constructs. Flexibility, in turn, is defined in termstlfee attributes: responsiveness,
pro-activity, social ability.Responsiveness the ability to respond in a timely manner to
perceived changes in the environmelto-activity is the degree to which the agent
exhibits goal/utility directed behavior. Finallsocial abilityis the degree to which an

agent is capable of interacting with other agents [RuagdllNorvig, 1995].

There are other agent-defining characteristics proposeatyong degrees by
other researchers. For instance, in open architeatdrdistributed systems such as the

internet, mobility is often touted as an importantragdaracteristic. In other
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applications such as agent-based route planners or heseatch applications,
adaptability is often stressed. However, though parti@galications of the agent-based
system may require additional characteristics to b&t mibective, the core agent
characteristics — situated, autonomous, and flexible aireto differentiate between

agents and other constructs.

2.1.1 Differentiating Between Discrete-Event, Object-Ognted, and Agent-

Based Simulations

Discrete-event, object-oriented, and agent-based siondadre at their core
simulations. The distinctions between discrete-eaject-oriented, and agent-based
simulations do not lie in their component functionsstéad, how the simulation
components are treated (implemented) from a programrangsoint distinguishes
these simulation types. The implementation specifiche simulation components do
not necessarily give one simulation type abilitiesumctionality that cannot be
ultimately engineered into the others. However, th@gdaemplementation may allow
easier (or harder) simulation of some environments siesys than would be the case
under another simulation paradigm. As an analogy, dengiat many different
computer programming languages will allow a programmer to admgentical tasks.
However, some languages, through their design focusy afione tasks to be
accomplished more easily through one particular langusgethrough others. For
instance, graphical user interfaces can be developed iTRAR but are much easier to

create in Visual Basic, a language specifically boilfacilitate graphical design. In
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simulation applications, one could develop a simulatiba manufacturing plant using C,

but will likely accomplish the task more easily us®idAN, SLAM, or SIMSCRIPT.

In delineating between these simulation paradigms,heipful to determine their
commonalities first. Law and Kelton (1991) list and defime following components of

a discrete-event simulation model:

System state: The collection of state variables sszrg to
describe the system at a particular time

Simulation clock: A variable giving the current value of
simulated time

Event list: A list containing the next time when eagbe
of event will occur

Statistical counters: Variables used for storing stedibti
information about system performance

Initialization routine: A subprogram to initialize the
simulation model at time zero

Timing routine: A subprogram that determines the next
event from the event list and then advances the
simulation clock to the time when that event is to
occur

Event routine: A subprogram that updates the system stat
when a particular type of event occurs (there is one
event routine for each type of event)

Library routines: A set of subprograms used to generate
random observations from probability distributions
that were determined as part of the simulation
model

Report generator: A subprogram that computes estimates
(from the statistical counters) of the desired
measures of performance and produces a report
when the simulation ends

Main program: A subprogram that invokes the timing
routine to determine the next event and then
transfers control to the corresponding event routine
to update the system state appropriately. It may
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also check for termination criteria and invoke the
report generator when the simulation is over.

Banks,et al, (1996) gives a similar list of components with sevadalitional

delineations, including:

Entity: An object or component in the system which
requires explicit representation in the model.

Attributes: The properties of a given entity (e.qg. phierity
of a waiting customer, the routing of a job through a
job shop.

Additionally, Banksget al, (1996) adds event scheduling to the function of the timing
routine. Regardless of implementation, these compsmamistitute and define discrete-
event simulations. Object-oriented and agent-basedaiions possess the same
component functions but require particular implementagtamadigms. Additionally,
agents are objects, but with additional constructsftindter distinguish them from the

broader classification of objects. The important dégtons are characterized below.

Entity representatianin every discrete-event simulation, entities are

characterized by a collection of attributes that cetey describe the state of the person
or thing as it is represented in the model at a givee.tiinder the object-oriented and
agent-based paradigms, these attributes are grouped togrethencapsulated within a

single software module, called an object or agent, réspsc

Data and data accesBiscrete-event simulations typically make usearhmon

memory (to include named memory as found in FORTRAN)ceAs to the values stored
in the memory is available to all procedures or functgireging the same scope (i.e.

global, procedure or function specific, etc.). In obg@ented models, the data is
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encapsulated within the objects and accessible only viaedehterfaces (methods)
within the object [Deitel and Deitel, 2002]. Within an agkbased paradigm, the data is
also encapsulated, but the agent does not have to Aoequest for data access [Sycara,

1998].

Event scheduling and entity actions both discrete-event and object-oriented

simulation, there is a master schedule, callec¥eat lisf that sequences when events
will occur. The event routines are typically sulinoes or separate modules that are
called based on logical processing of event list fldgobject-oriented simulations, the
event routines associated with a particular entpetgre contained within the object’s
methods. Each object must schedule its next evenbfoe sime in the future (or have

some other related event schedule it) for that eweotdtur.

Within an agent-based simulation, the agent is runningsawh thread of
execution. As a result, there is no master sequendénsgead, the agents request
permission to act from the main simulation program basetth@ simulation clock time.
Each requesting agent that needs to act at a discretdarptine is provided a slice of
CPU time in which to perform their actions. As a fgeghe main simulation program
does not necessarily know the event types that may eathin the simulation, only that

an event will occur.

As an example of the agent-based approach, considBathef Biscay agent-
based simulation presented in Chapter IV. The sinaulatiock is kept and updated in
the environment object, which serves as the main progfance the simulation

instantiates (creates) the agents and starts thenduoédl threads at simulation start, the

22



agents internally schedule their next action. Tha&mpeogram has no indication of when
a particular agent has an event scheduled. Insteadagachnotifies the simulation
timer of its next event time and requests permissiatt@ccordingly. If the agent’s
next event is scheduled for the current simulatiome titnis given permission to act (i.e.
let the event happen). If the next event is at siomme future to the simulation clock, the
agent is told to wait (i.e. not take action on the &veihe timing routine notes the
smallest future event time as the agents request pesmissact, and the simulation
clock is advanced to the next known event time. Adirag are then notified that the

simulation clock has been advanced so they may againstqogrenission to act.

The object-oriented and agent-based approaches to builgegicular
simulation model have both advantages and disadvant&gsct-oriented design (and
agents are objects) provides a “natural and intuitive wayetwv the design process —
namely, by modeling real-world objects” [Deitel and Dei&l02], providing a natural
way to conceptualize many real-world systems. As dtrektollowing an object-
oriented or agent-based approach, maintainability is entidhosugh their naturally
modular structure (a good software engineering practigdilitionally, when [Law and
Kelton, pp. 103-105, 1991] distributed simulation is discussgidctoriented and agent-
based programming represent a logical, intuitive methoduiomodel decompaosition for
distribution over several processors. Indeed, ageedmstems in particular are well
adapted for open network computer environments such as ¢neeinbr World Wide
Web [Sycara, 1998]. As the DoD, in particular movesaiwthe High Level
Architecture (HLA) for federated (open network) warganmeusations Modeling

Human.., 1998], agent-based applications present an attractivenmapitation avenue.
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On the other hand, for non-distributed applications eskheagent-based simulations
require more overhead to control the proper timing of adewven events. Additionally,
the agent-driven events cause the main simulation amogy give up control and
authority over the simulation events. This is of paftar concern in open network
computing environments where the simulation designer melgave@ control over

simulation agents implemented by other parties.

2.1.2 Differentiating Further Between “Agents” and “Objects’

Agent-based programming is an outgrowth of object-orier®€a) (programming,
so agents and objects share some important characterigin object is a self-contained
software entity (i.e. internally maintains all of gtate data and methods for performing
actions or computations). Important distinctions betwgemts and objects include

autonomy and flexibility.

In object-oriented programming languages, objects can be progra with
varying levels of autonomy through the use of access raml{e.g. in JAVA® these are
public, protected or private), which can restrict access to their variables ohowu.
Variables and methods declared as private may only besacctsm within the object
itself; protected limits access to other objects withensame package; and public allows
unrestricted access. By maintaining private methods amables, an object maintains
control over its internal state. Such an object eihdnitonomy over its state [Jennings,

et al, 1998].

An object cannot exhibit control (autonomy) over itsébabr. Objects do not

have their own thread of control, and an object cabedentirely) constructed of private
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methods and still be useful. Some methods must be madakde to other objects, or an
object-oriented system does not function. Once a meshmdde publicly available,

then it can be invoked at any time from outside thequaar object. Therefore, the
object has no control over when the method is involégents, on the other hand,
function on their own thread and, as a result, mairgantrol over their state and

behavior.

Flexibility also differentiates between objects andnégie The standard object-
oriented model does not prescribe building responsivepessctivity, or social ability
into the system [Jenningst al, 1998]. Though objects can be built such that these
characteristics are integrated into the design todegeee or another, the standard OO

program does not imply the presence of any of thesactegistics.

2.1.3 Types of Agent Behavior

The primary contributor to the study of agents has deefi¢ld of Al. The study
of intelligence, especially Al, is broadly categorizetb four fields of study dealing with
combinations of methods of thinking and acting (Table 2.1 tygpically software

agents used in the study of social sciences encompass these four areas.

Table 2.1 Four Categories of Al Study

Human-centric Rationality
Thought process Systems that think like Sy;tems that think
humans rationally

Systems that behave act il

Behavior
humans

(eSystems that act rationally

[Russell and Norvig, 1995]
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For systems built to think like humans, the focus is@gnitive modeling, or
simulating the process of thinking as it is done infilian mind. Systems that are built
to behave like humans concern simulating machines capapéssing a Turing test.
Systems that simulate rational thinking are concernddthe logical process of arriving
at a correct conclusion given correct premises. Kingistems built to act rationally are
geared toward producing actions that best achieve a getisfgiven a set of beliefs.
Most agent-based simulations fall within this lattelegary. Agents built under this

construct are called rational agents.

This research is limited to the field of rational agerRstional agents are
intelligent agents that “do the right thing” [Russell &wtvig, 1995; Hendler, 1999].
Rational agents perform those actions producing the raostéss” based on its goals
and present knowledge (i.e. rational agents look for mimwptraffic before crossing a
street because not getting run over improves its charfigesting to the other side). This
characteristic makes them ideal for conveniently &rpg many behaviors [Hendler,

1999].

A future avenue of research for agent-based combat mgdslthe modeling of
“irrational” combat agents (e.g. suicide bombers). Suobdels might then expand the
space of potential combat outcomes from the modetliyeamproving overall levels of

analytical insight.

2.1.4 Agent-Based Programming Defined

An agent-based program is one in which the primary alstnaeithin the

system is an agent. For example, in a combat-odeagent-based simulation, the role of
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the agent is that of an individual component of théesgsuch as a soldier, tank, aircraft,
or ship. Each agent within the system is an autonomadityg #at contains its own

decision and action algorithms for use in its environment.

Agent-based systems can represent how natural systerkdwdistributing a
problem among a number of autonomous entities [Middelkodashmukh, 1998].
Agent architecture is particularly useful when a problamlee readily decomposed into
multiple sub-problems [McDonald and Talbert, 2000]. Téiedpecially true when there
is a great deal of parallelism possible; each agemhigtaneously performing its
individual task [Moscato, 1999]. Additionally, the learningl @aaptive nature of agents
lends itself readily to problems containing uncertain sibna [Middelkoop and
Deshmukh, 1998], especially those systems that are préoeatzed failures of some
sort. Examples of such systems include natural proeésssdator-prey), game theory,

social sciences, political alliances, warfare, an@othaotic systems to name a few.

However, agents are not ideal for all problem situatidngarticular, agent-
based programming is not well suited for situations whegn@blem cannot be
effectively divided into a series of interacting subigems or sub-goals. Similarly, if
the desired actions are known and fixed, then the ageetil@pproach is not generally
justified. In these cases, the high overhead assdaidtle agent-based approaches is not

warranted [Middelkoop and Deshmukh, 1998].

Because the agents are autonomous entities possessimmath decision and
action algorithms, the purpose of the simulation mechaniben is to establish the

simulation environment, to start, to monitor, and to eredstimulation, while collecting
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pertinent data throughout. By analogy, suppose the ageatiltombat simulation were
considered a game. In a game, the agents would be coddidenglayers, and the
environment would be considered the field, court, or playiregdoThe simulation
mechanisms would be the arbitrator (referee), who colsntine start and end of the game

and determines the winner based on the games rules.

2.1.5 Properties of Agent-Based Systems

As computing systems and applications become more cantpére is an
increasing need for tools to handle the complexity. Ppawerful tools for effectively
handling complexity are modularity and abstraction [Syc&®98]. Agent-based
systems offer both, when properly constructed. Asutregent-based systems offer

many potential benefits.

The primary property of agent-based systems is emergbawvior. Emergent
behavior is not behavior that is explicitly programmad ithe system. Instead, it arises
as a consequence, sometimes unforeseen, of the myteaaictions between system
agents. In many cases, emergent behavior is a bearefliling agents to collectively

solve problems that they individually could not solve.

As a direct result of the emergent behavior phenomeagemt-based systems
have the ability to solve problems that are larger tharagents can solve on their own.
The result is a loosely coupled system of problem seltret locally solve a portion of
the problem and then interact to resolve the taskshetoequired solution. This brings
some ancillary advantages as well. Primarily, byoéng a decentralized approach to

problem solving, this alleviates the need for a centrabggsht that monopolizes the
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resources of a given location. This in turn reducesiskeof resource bottlenecks and

protects against a centralized system that could failcatical time.

However, emergent behavior can take a form that isteopnoductive or even
fatal to the system, meaning agent system designers akessgiecial care in avoiding
these types of emergent behavior, or at least buildisgecific mechanisms to identify
and control the behaviors. Therefore, while emergehatior is a powerful aspect of
agent-based systems, it can also bring about unexpewtachevanted consequences.
This is of particular concern in research avenuessiigegting autonomous swarms of

unmanned aerial vehicle agents [Guadiaat@l 2003].

In addition to (beneficial) emergent behavior, theeatvantages to designing an
agent-based system that are naturally derived from ageats in object-orientation and
from their modular nature. First, modularity aidshe ability to decompose system
development into small, easily managed tasks that chartmied by simple agents.
Additionally, modularity also assists in easing thentenance effort of the system
components. Changes to an agent are made directdygndapsulated data and methods

(versus data and modules scattered throughout the somjlat

Aided by the flexibility of agents to dynamically reorganiz¢he system to solve
new problems, agent systems can require less redeBigsm holds for two reasons.
First, it is a natural advantage stemming from the olgdented nature, especially with
respect to the inheritance property, of agent design. n8eooce deployed with the
proper interface, the same agent can be used by mafpleations to solve different

problems for which their area of expertise is a necg s&at.

29



Agent-based systems also have the ability to save adgabof money for
owners of existing legacy systems, those developed longratjbaving critical
functionality. Redesign of these legacy systemsiderin an increasingly distributed
environment is often extremely costly, if not impraaticHowever, system designers
have the ability to “wrap” an agent around these legadgsenabling the legacy system
to remain viable in a distributed environment [Woods and Barpb2999]. Wrapping
entails constructing agents that function as front-eaduies to the legacy code, or as
intermediaries between two incompatible legacy systefhe agent then performs the
necessary translations of data, input, and output to prowilénuing serviceability to

legacy systems without expensive redesign.

Agent-based systems also offer the chance for enhagstahrsperformance in a
number of ways. First, agent systems offer an oppibyttor computational efficiency
because simple, focused agents can work concurrentheorarea of expertise without
competing for centralized resources. This is true provededmnunications are kept to a
minimal level. Second, agent systems provide added syst&iility by introducing
redundant capabilities. Agents can dynamically find adtieragents to accomplish
specific tasks when other agents fail or are not prgsetite case of open systems).
Third, agent systems are capable of exhibiting an extensibilitgsources in solving
certain problems. This occurs when a number of agedtthair various capabilities can
be enlisted to work the same problem. Finally, agentebsyggems are capable of a
robustness not typically found in other systems. tighotheir very design, agents are

capable of working in uncertainty and in a dynamic enviranir(@g. search agents
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situated on the world-wide web). This means that agemt$iandle anomalies locally

without propagating them through the system.

There is an additional benefit agent-based systems prasidalirect offshoot
from their design. Because the agents’ sensors dra/ioe mechanisms are completely
encapsulated within the object structure, they providewalanetaphor for the real-
world system. That is, it is easy to view the reatld/agent in terms of the virtual agent.
Because of this, agent-based systems are particulargrgpoviding solutions to

problems that are naturally regarded as a society ohanmous interacting components.

The benefits that agent-based systems promise comenaitis challenges as
well. Though research into multi-agent systems is raciag rapidly, the majority of
agent systems are single agent systems [Sycara, 19688heagr are still many issues that
must be addressed to fully capitalize on agent-basedsystéhout falling prey to the

disadvantages that such a loosely bound collectioaftfare present.

One of the major concerns regarding agent-based sygeheslack of a
centralized coordinating authority [Russell and Norvig, 1999]sence of a centralized
controlling authority can allow unwanted emergent behaa®ipreviously discussed.
The system developer must take great care to ensurantlagent system exhibits
coherent collective behavior while avoiding unpredictébteharmful) behavior.
Moreover, the developer must be mindful that as veed\aiding harmful behavior, the
nonlinearities associated with the agent interactiongiggaan environment that may be

unstable, and the designer should take steps to avoid tlssquance. Currently, a
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centralized authority, of some form, provides the only swag of handling harmful

emergent behavior.

The decentralized nature of agent-based systems presestsof global control,
perspective, and data. In this environment, the designemdbésve the means to know
what the state of the agents’ coordination processétherefore, there is often no
method for the designer to recognize and reconcile dispatatgions among the

collection of agents attempting to coordinate [Russell amity, 1995; Sycara, 1998].

Another challenge is the criticality of agent commundare in multi-agent
systems. Since agents work autonomously, a great detibdfinvolves ensuring agents
are able to request data and provide solutions corrdetiguring smooth
communications between agents can be a major desifgmtaking, but it is essential to

make sure agents interact correctly.

A big issue associated with inter-agent communicatidineisssue of resolving
conflict and avoiding deadlock. Conflict occurs when twmpeting agents vie for the
same resource. If conflict should occur, then the agest must be able to recognize
the conflict and then have methods for resolving thaflict. Deadlock, on the other
hand, occurs when two agents are waiting for a respomsetiie other before they
perform some action. Under such a circumstance,eratient will begin its required
action. Special care must be given to removing all sswtdeadlock in a multi-agent
system when designing the agents. To further complicateers, especially in open
systems (e.g. the internet), consideration must be govére interaction between

heterogeneous agents that may be introduced into trearsyst

32



Perhaps the greatest challenge to agent-based systentesgn the system so
that the agents are able to correctly formulate, desalecompose and allocate the
problems and sub-problems in such a way as to ensure¢hagehts are able to
synthesize results from the system. A stable systiéimno unresolved agent conflict is
of little use if the agents are not able to provide solstionthe problems they were built

to address.

2.2 Types of Agent Systems and Uses

Agent-based systems have been used successfully acrosbar of different

fields in recent years.

Of particular note is the success agent-based syst@vashiad in heuristic
optimization methods. Champagne (2001b) summarizes sao@et agent-based
heuristics based on population-centric models of natusé¢ss such as ant colonies,

immune system function, and swarming.

In addition to heuristics, the uses of agent-based satinahe fields of
networking and distributed computing are extensive, anddeelimented in the
literature. As reliance on distributed systems immesgagents are being developed to
monitor system performance, track component availabdityg, provide data on
communication link performance with respect to the netvji®ycara, 1998]. Usage of
the internet is becoming dominated by agent applicatiotigiform of “softbots,”
temporary agents performing specifically tailored taskeémh user of a site to
customize searches and organize data [Hendler, 1999]. uftigen of agents seems to
rival the number of potential tasks.
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Agent-based software is finding particularly successfuliegon with respect to
data and information management. With disparate datmhsssged throughout many
distributed systems, agents are being assigned to pldcetaieve data according to user
needs. These agents can be used as “wrappers” thaiasean interface between
otherwise incompatible systems, thereby alleviating thd fegecostly database

conversions [Sycara, 1998].

McDonald and Talbert (2000) extended this concept for milgéanulation data
management. They proposed maintaining a central reppsiteimulation input data
using agent interfaces. These agents could be respoiasibétrieving data and
providing it to the user with the proper level of aggrematind in the proper format for
the intended application. The net result would be Hi@yato maintain a single
approved source of data for all military simulation ugesuring consistency between
analyses and models. Though this is an extensive fiegldegit research with interesting

application to the military analysis community, inist a focus of this research effort.

2.3 Agent-based Combat Simulation

The first agent-based combat simulation to be founderitérature was a
cellular automata (CA) model used to show tactics anargent behavior [Woodcock,
et al 1988]. Since then, as in many other fields of studrethas been increasing
interest in the use of agent-based models for mildaalysis. In spite of a large and
growing field of agent literature, most articles deahveiboperative agents, that is, agents
with compatible goals [Sycara, 1988; Hendler, 1999]. Inasgect, work in the area of

combat simulations differs from the vast majorifyagent literature.
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Perhaps the most coordinated effort to date at agent-basdzht simulations is
the US Marine Corps’ Project Albert. This effort begath the idea of exploring “the
middle ground between ... highly realistic models that provitle insight into basic
processes and ... ultra-minimalist models that strip aalldyut the simplest dynamical

variables and leave out the most interesting reaMi@tigllachinski, 2000].

The first Project Albert simulation, Irreducible Semit&nomous Adaptive
Combat (ISAAC), was built as a proof-of-concept modalémonstrate the applicability
of complex adaptive systems (CAS) to combat modelinghoAgh ISAAC is often
referred to as a “conceptual playground” [llachinski, 1998, 200&hd follow-on
simulations such as Socrates, Pythagoras, and Map Aveareiiiform Automata
(MANA) [Lauren, 2001, 2002] have demonstrated promise for ggimsights into
battle not possible with traditional combat models. Bbbd results have demonstrated
the potential in ISAAC-type models to contribute in deesareas such as the
development of tactics as an emergent behavior [llakhiB800], exploring the role of
combatants’ trust in combat effectiveness [Bergerd@@l], providing risk assessment
for peacekeepers, and quantifying the value of reconnaisganoebat effectiveness

[Lauren, 2001].

The models of Project Albert present a dilemma to gemtbased combat
simulation researcher. Although the models employynadinhe techniques of agent-
based systems, the simulations are not strictly ageseeb For instance, the “agents”

within these simulations do not have their own threfaekecution. Therefore, the
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entities within the simulations lack the requisitecauatmy defining an agent. Instead, the

simulations are categorized more accurately as objesatted simulations.

In recent years, there have been an increased nuhagent-based simulations
used for studying various aspects of combat. For examplbe T1999), developed an
agent-based simulation based ultimately on the baidkifig algorithm [Levy, 1992]
and ISAAC [llachinski, 1998, 2000] as an attempt to find a methodantifying
strategic effects, purported to be one of the main stremgthir power in combat.
Bullock (2000) continued the research into modeling stratgtgcts with the
introduction of the Hierarchical Interactive Theatevdél (HITM). This model was
intended to provide a sufficiently complex tool able to sistnategic effects of air
power, while retaining enough simplicity to allow identifioa of interactions between
important factors [Hillet al, 2003b]. Other agent-based combat simulation research
includes modeling riot tactics for small military units §dtaman, 2000], small unit
peacekeeping tactics in an urban environment [Brown, 2000], Gedraan training

scenario involving small units over a relatively shareiperiod [Erlenbruch, 2002].

Though each of the above are representative of treatahe-art with respect to
agent-based combat simulation, Chapter IV outlinesléivelopment of an agent-based
combat simulation based on the allied offensive ag#iesGerman U-Boats in the Bay
of Biscay during WW Il and compares the model resultk tie historical data. This
extends the state-of-the-art by validating the agesed@aradigm in modeling a

significant real-world combat operation. This demonegéhat it is possible for agent-
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based modeling to move beyond the “intellectual sandbod’isto more significant

combat analyses.

2.4 Adaptation

Adaptive behavior is more sophisticated than emergenwioeha that
experience provides the basis from which to select &lb@ennative options and
successfully meet new and diverse experiences. Addmheavior, therefore, is behavior
that is formed as a result of the agents’ experieragsit provides a very powerful

problem solving tool [Holland, 1995].

There are essentially two established avenues avaiabtedviding mechanisms
that allow agents to change their strategies in adagystems, evolutionary or learning
(and of course a combination of the two). Evolutiorsrgtegies focus on exploiting the
characteristics/actions that make up successful ageatgopulation and simultaneously
providing a method for introducing new characteristics they lead to more successful
agent behavior [Holland, 1995]. Learning, on the other hderyes future actions from
prior knowledge gained from experience. Learning can ocoomgh trial and error
technigues or imitation of apparently successful agehtiglitionally, learning may take

the form of some type of supervised training [Looney, 1999].

Since the earliest CAS models were studied, geneticiddgnotype experiments
showed that the interaction between populations ofa@atispecies could produce
individuals within the population that were especially gamith respect to their
environment [Ferber, 1999]. Although the internal struob@itbe individuals changed
as a function of interspecies and environmental intenagtithese individuals did not
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display any real learning. That is, while the derivedviddial might be more “fit” for
harsher environments, the changes could make the indisidoalitable for the
environment in which they were initially spawned, and thisspecially true in co-
evolutionary environments where competing agent-typealiawwed to simultaneously
adapt. Therefore, genetic algorithms do not provide alicéxpechanism for the

retention of experience within either the populatiorherindividual.

2.4.1 Types of agent adaptation

Though emergent behavior, in and of itself, is a potemtacteristic of agent-
based systems, the ability for individual agents to adefbietir environment gives these
types of systems an additional (and powerful) tool thatbe used to explore the system
and its individual components. There are essentiattyrhechanisms of agent

adaptation, learning and evolution.

2.4.1.1 Learning

No combat CAS simulation currently uses learning agthod of adaptation.
Learning, however, is used in other agent-based applisaéind research. Learning can
be done from scratch (i.e. no inbred knowledge), or itbegyin from some
predetermined, pre-programmed knowledge base. Enabling thecagents to learn
require mechanisms for allowing the agents to evaluatsutmess of their chosen
strategies in any context in which they find themselvEss is generally done via an
attribution of credit mechanism. Under such a mecharssotess due to any given

course of action would receive a positive credit, tinetiacreasing the chance that the
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same course of action will be performed again. Conlerfsglure would result in a

negative credit that discourages future selection afange course of action.

While computers are astoundingly good at following algang, much more
effectively than humans, in order to solve complex problehey are far inferior to
humans in the realm of learning. While humans are iitdseddept at applying their
experiences to new situations, it is very difficulget computers to adapt to even
moderately different situations. Getting computersaonend adapt has been a focus of
Al and other branches of computer science almost siecadvent of the computer

[Russell and Norvig, 1995; Levy, 1992].

Examination of the mechanisms of learning gives greathhgip the reasons
humans exceed computers in their ability to adapt to neatsins. Humans, it seems,
learn by methods of abstraction, pattern recognitioth aggregation. These involve
recognizing similarities between objects or events amskdling them based upon these
similarities. Then when faced with a new object aragibn, if these similarities are
found, the same classification is applied. Once ficgrit knowledge base is built,

subtleties can be recognized and sub-classificatiobedormed.

Anyone who has had a child can recognize the processnh ésaanple, consider
a child just beginning to speak and learn the names of ebjétke ability to apply
abstraction is well developed very early. For instaacghild might learn the word
“bird,” and in the beginning, the word might be applied twstranything in the sky.
Soon, however, the child will begin to recognize birds by fleem and then accurately

name birds that were stationary in trees. What'semtie child would be able to identify
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birds in pictures, too. In a short time, and with theexi experiences, the child might
soon be capable of identifying owls as a particular bird, tolife, pictures, and
drawings. Experience has demonstrated that in the childwledge base, there is an
abstracted model of both generic bird and specific owlatat him to correctly

distinguish these in a wide variety of circumstances.

As simple as this seems, such a task for a computeitésfqumidable.
Recognizing birds and owls within a group of birds whetheeat life, in pictures,
and/or even simple drawings would require the programminchat humans would
consider the “essence” of birds (and the almost infanitay of subtleties that further
delineate owls from birds) into some sort of knowledggeb Then, when presented with
an object, the computer would require the ability to absthe object sufficiently for it
to resemble the appropriate representation in its knowledge. When the abstraction
resembles two or more entries in the knowledge baseg slecision process must allow

the computer to select the most appropriate entry.

When applying experience to new situations, the processyssimilar. Faced
with a new situation, a human generally looks for wiayshich the new situation
matches any experienced previously. Indeed, the new situatiy remind him of
several different experiences simultaneously. To fedbiest course of action, the
human would compare current goals to those it faceciptévious experiences and
choose the path that experience has proven to beeffiestive given the likeness of
goals. The process involves abstraction to a suffitémel to either draw from

experience, or recognize that there is no previous exgerieom which to draw.
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On the other hand, while abstraction is somewhat inh@rédntmans, computers
have no inherent capabilities that are not explicithigpgmmed. More importantly, the
subtleties of abstraction that make humans good atinagdptnew situations are often
functions of personality, including “gut feelings” or attitsdeward risk. These are not

easily quantifiable in terms of software encoding.

2.4.1.2 Artificial Neural Networks

Artificial neural networks (ANN) are artificial intigence approaches to learning
used in discrimination and function approximation. Thaimna is derived from their
(theoretical) structural similarity to neurons in tirain. A typical network consists of
one or more hidden layers of “neurons,” weighted funstievhich respond to the input
values according to an activation function that difeesording to the type of network
used and an output layer of neurons. The response d§ustnaent of the weighting of

the function.

In order to produce the discrimination or estimation fiom; the networks are
given input data used to train the network. The trainiethods used differ according to
the type of neural network employed, but the net teduhe training is a series of
weights that can then be used to approximate the underlywtdo of interest, assumed
to have produced the data. When the weights have bgesteatito best fit the training

data, the network has “learned” the process that prodheethta.

2.4.1.3 Genetic Algorithms

Genetic algorithms are a common method of adapting s&tagents, and they

are well established in the literature. GAs are soedhdue to their similarity to the
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biological process of sexual reproduction in species usgererate the genetic makeup
of the next generation [Holland, 1995; Axelrod and Cohen, 2006 generic process

works in three steps: reproduction, recombination, andtionta

The three steps of a GA together allow for an efficleeuristic search of the
parameter space. Reproduction and crossover provide a nedtinbehsification,
searching heavily in areas shown to be good. Giving unstigcagents a (small)
chance to influence the next generation of agents endhaiesome parameters that
would be good in combination with others are not entiredy o the population.

Mutation, on the other hand, provides diversificatios, dhility to search new areas.
Together, these three simple steps concentrate ongangrareas of the parameter space
(intensification), while simultaneously allowing theaseh to escape local optima

(diversification).

2.4.2 A New Approach to Agent Adaptation

Adaptation in agents occurs through any process that ndgients’ behaviors
based on their experiences. Though the two approachesptatama GAs and ANN are
the most typical methods for agent adaptation, theyairéhe only ones. The
complexity of computation associated with each of tlmsthods and the volume of data
required may be more than the modeler is willing to cdeder, in the case of data
requirements, require more data than exists) during diimmlexecution. This research
developed a different approach allowing a sufficient amotiatiaptation to occur

without incurring the computational or data intensity agged with GAs or ANN. The
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adaptation algorithm is developed in Chapter IV. Restdis the proposed method of

agent adaptation are presented in [Price, 2003;edid}, 2003a].

2.5 Conclusion

Agent-based systems are finding increasing acceptanogiiteavariety of fields.
However, until recently, the majority of the resdabhas dealt with cooperative agents
used in optimization heuristics, database managemehtistnibuted network
management. Agent-based simulation has only made @siiog the modeling of

combat in the last five years.

Agent-based systems are built on the premise thamysvel behavior emerges
from the interactions between the entities withindyxgtem. Rather than construct
models that concentrate on the system, these manteis instead on modeling the
individual system components and their behavior withirsgtstem. Under this
paradigm, it is little wonder that social sciencesnbat analysis among them, have
become interested in utilizing these models to gain ingngbteffects of individuals’

actions and decisions on real-world systems.

Much of the work touted as agent-based within the mylild&S community
does not approach the autonomy of system entities rddayracademic consensus to be
considered truly agent-based. As for those combat mtuslare actually agent-based,
most of the combat modeling to date has concentrateaaring small, toy problems
with little linkage to real-world scenarios that wouktablish legitimacy within the

analytical community.
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lll. Simulation Validation and Verification Methodo logy and
Taxonomy

According to the DoD, a model is “a physical, mathecadtor otherwise logical
representation of a system, entity, phenomenon, @epsd [DoDI 5000.61, 2002; DoDI
5000.61, 1996]. Balci (1994) defines a model as “a representaticabatraction of
anything such as a system, concept, problem, or phenomé&hatigh V&V literature
provides other various definitions, a common aspect hunsigh them all — that a model
is a simplifying abstraction of some real-world systebhe model then allows for
experimentation or analysis by proxy when it would be aufical or infeasible for

experimentation or analysis using the real-world system.

As an abstraction from reality, any model is, therefan imperfect
representation of the real-world system it represeimspite of imperfections, however,
the use of models is an integral part of the decisiorningakocess, whether the model
resides solely in the mind of the decision maker om®ee substantive, formal model
constructed to specifically explore the implicationspécific decisions or phenomena
[Jenkins, Deshpande, and Davison, 1998]. The purpose ofi¥&/provide tools and
methods for determining the extent to which the imperfexehaccurately represents

the real-world system.

Though the concepts and terminologies have maturedtsieceibject was first
addressed almost four decades ago, many of the underlying pr@sisocsated with

V&V remain. Naylor and Finger (1967) write “managemeneststs have had very
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little to say about how one goes about ‘verifying’ mwiation model or the data
generated by such a model” and “the reason for avoidinguthject of verification stems
from the fact that the problem of verifying or validgticomputer models remains today
perhaps the most elusive of all the unresolved methgaaloproblems associated with
computer simulation techniques.” Other authors have rbésg weaknesses as well.
For example, Schrank and Holt (1967) wrote, “the validgpiarblem has been
neglected” and “even though the methodology of validasastill so undeveloped, it is
critically important that serious and extensive efftdtsmade to test and validate
simulation models before applying them.” Naylor and Fi{@867) further address the
significance of V&V when they write “verifiability is. necessary constituent of the
theory of meaning. A sentence the truth of which cabealetermined from possible
observations is meaningless.” More recent literatuderstores the same general
weaknesses in the field. Kleijnen (1996) points out ttle ¢d a standardized general
V&V methodology when he writes “unfortunately, thedédture gives neither a standard

theory on validation, nor a standard ‘box of tools’.

The purpose of this chapter is to address this lack of sthtitzory in the
validation literature. This chapter consolidates curdefinitions, develops a taxonomy
of V&V techniques, and extends V&V into agent-based moidelthe first time. The
V&V methodology is outlined based on several current n@okihe overall modeling

and simulation process.
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3.1 Definitions

Early V&V literature did not distinguish between veré#ion and validation
functions; instead, all techniques used to determine a madetsctness, applicability to
an application, and scope of applicability were commondypged together under the
termmodel verificatiorfNaylor and Finger, 1967]. However, verification and vdima
functions were soon made distinct. Mihram (1972) pregasfive step modeling
process (adapted for Figure 3.2), which included verificatiahvatidation as separate
steps. More recent literature [Law and Kelton, 1991; BaR94; Banks, Carson, and
Nelson, 1996; Kleijnen, 1995a; Kleijnen, 1995b; Kleijnen, 1996] maisttie
distinction between the two modeling functions (i.&W in determining overall model

fitness.

There are many verification and validation techniquedatta for building
confidence in the results produced by a model, but thewe sséandard set of tools
applicable to all models. However, no technique, or setabiniques, can prove beyond
all doubt that a model is entirely correct [Forresimt Senge, 1980; Balci, 1994].
Instead, each successful test is intended to provide an augeslire of surety with
respect to the accurateness of the results produced bytted fiNaylor and Finger,
1967]. Similarly, a failed test does not completely “ildatle” a model. The failure
merely highlights a shortfall in the model's range plecability [Hodges and Dewarr,
1991]. The extent to which this failure impacts the modedefulness is, in the end, a
matter for the model user and is influenced by the risk s®gan using a model that

potentially produces harmful results.
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Any suitable V&V taxonomy requires unambiguous terminolod@g this end,
the remainder of this section defines the importanteotscn both the M&S and V&V

processes.

A conceptual modest the abstraction of the real world system [Bal®94]. The
extent to which it is an accurate representation isrdehed by the techniques used to
verify and validate the implemented model. Though th@nriy of the literature deals
specifically with computerized simulation models, mddthe definitions and techniques
are applicable to implementations extending beyond thguater simulations. Indeed,
since computer programs are algorithmic, the principles necstssarily apply to any

implementation of these algorithms, regardless ofrtipementation environment.

Law and Kelton (1991) define the process of mageificationas “determining
that a simulation computer program performs as intendewl'many publications in this
field subscribe to this definition [see Kleijnen, 1995a, 19%&geet al, 1997].
Verification ensures that the executable model is baiitectly. Verification does not
indicate the correctness of the conceptual model caph@ess of its implementation;
instead, it is the process of determining the accuradyeoplementation of the
conceptual model within the chosen modeling environment. pracess is generally
referred to as debugging and is primarily concerned withnftnend correcting
syntactical and logical errors in model implementati¥erification, therefore, ensures
that the conceptual model is correctly and faithfullpiemented in the executable

model.
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Law and Kelton (1991) definealidationas “concerned with determining whether
the conceptual simulation model ... is an accurate repagenof the system under
study.” Others cite Schlesinget,al (1979), who defines validation as “substantiation
that a computerized model within its domain of applicabibssesses a satisfactory
range of accuracy consistent with the intended appicati the model” [see Sargent,
1991, 1996; Balci, 1994, 1995; Balci and Sargent, 1984; Fraedrich ance@pR9D0].
Validation, therefore, is concerned with building thghtimodel for its intended
application. Likewise, validation techniques are useddwige confidence that the
conceptual model sufficiently represents the real systeing studied and that the
implementation of the conceptual model is sufficiemtthe purposes of the particular

study being conducted.

These definitions (verification and validation) taken tbge indicate the building
of user trust to a necessary level of sufficiencgitred to a specific application.
Therefore, a model should be developed for a specific peiroapplication, and its
applicability, likewise, should be determined within thateat of that purpose [Forrester
and Senge, 1980; Sargent, 1991, 1996]. A general methodologicloa &/&V process

is developed later in this chapter.

Reliable data is at the heart of reliable models. Mdrijie validation techniques
discussed with respect to model structure in subsequeitrseare directly applicable to
data as well. This research does not, however, fat¥&¥ for data specifically.

However, the type, fidelity, or reliability of good ddta use within the simulation often
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drives the assumptions used in developing the model. foheréhe modeler should

make sufficient efforts to validate the data used imtbdel.

3.2 Taxonomy

There are a wide variety of techniques that can compmsetlaodology for
building confidence in the results of a model. Thelle¥eonfidence needed in a model
will vary as well, depending on the intended applicatios the risk associated with
using incorrect model results. Different techniques nesponfidence at different levels
of formality and rigor. The literature classifying tleehniques based on the application
of the V&V techniques is lacking. This section presamt®riginal taxonomy of
verification and validation techniques based on the fonaif the method (whether

verification or validation) and the type of confidencsgpined.

Two generalized verification and validation taxonomiesafeund in the
literature [Davis, 1992; Balci, 1994]. However, importantaeficies were found in
each. First, these taxonomies were developed pritietoecent explosion of interest in
agent-based modeling. Not surprisingly, neither coverg tiypes of simulations.
Second, in Davis (1992), the presented taxonomy lacks bdsitides with respect to
the V&V categories making its use somewhat arbitrary,dsfithing methods of V&V
within its context difficult. Third, the general V&\Axonomy presented in [Balci, 1994]
is identical to the verification (only) taxonomy in fither and Balci, 1989]. Though
V&YV are important as a holistic process, each hastindt function, and the tools

associated with each are quite distinct [Caughlin, 2000¢réefbre, a taxonomy should
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acknowledge the difference in functionality and purpcséen verification and

validation.

Figure 3.1 depicts a graphical representation of the V&Vrtamty based on the

intended focus of the technique. The taxonomy is basé¢drea general classification

categories each for verification and validation. Heatthe six are defined and illustrated

with examples in the following sections.

Verification and
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)

v

Validation

!
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Software
Engineering
Practices

Static Verification

Dynamic
Verification

Face Validity

Empirical Validity

Theoretical Validity

Figure 3.1 Verification and Validation Taxonomy

3.2.1 Verification Classifications

There are three general approaches to ensuring an exeauiaie| accurately

represents the conceptual model. These verificatiteyosdes are: software engineering

practices, static verification, and dynamic verificatiolr hese categories represent a

natural classification based on verification techniquesl irs constructing the model, to

check its implementation prior to execution, and to clitsckorrectness when running

under various conditions, respectively.
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3.2.1.1 Software Engineering Practices

The field of software engineering has produced a nunflq@nactices that aid the
verification process by reducing the number of potentiasaoé error. Most modern
computer programming languages actually require adherenciesstsome of these
practices. Some common examples of good software emngigeractices applicable to

the modeling process are described below.

Logical and data flowchartingLogical and data flowcharts express the

conceptual model in terms of an algorithm and data requimesmé& hese charts reveal
the structural and data requirements of the model, enabhaighful translation of the
conceptual model into an executable form. Once the ndeilt, logical and data

flowcharts become a powerful tool for both static apdagnic verification techniques.

Strong variable typing Variable typing is the method computer programming

languages use to determine the amount of memory requiretétoally store the values
assigned to the variables during execution. Each varigideid capable of storing its
data to a specific precision. Strong variable typing do¢sllow data of a greater
precision to be stored in a variable typed as havingsargsecision. This prevents

unintended loss of precision during program execution.

Modular design Modular design is a method of program coding that groups

program statements according to some common functignaii its basic form, sub-
modules (also called functions or procedures — dependitigeaactual programming

language used) are formed, allowing utilization of a sisgggment of code from multiple
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other places within the code. Therefore, instead of ptaldreas of identical code

having potential errors, verification efforts can beaamirated on a single sub-module.

Object-Oriented design is modular design taken to anragtrevith all computer
code encapsulated in modules called objects. Agent-basgchpriming is an extension
of OO design that groups all functionality associateith an entity into a single object.
Many of the aims of OO design support ease of modelicatidn by stressing the reuse

of previously verified objects [Sycara, 1998].

Extensive documentatiorDocumentation, both internal and external, allows

programmers, maintainers, and third party auditors tométereasily the intent of the
documented code and, as a result, to identify coding lbgicdbes not conform to the

conceptual model. Documentation also facilitates meatycsvserification methods.

Built-in error identification A particularly effective verification method is to

program checks into the model at data entry pointso Rhown as “trapping” or
“handling,” this technique allows the programmer to instatlfication into the model
itself. When used in conjunction with dynamic verifioatmethods, error trapping can
be a powerful tool in identifying and isolating “spuriousi@dgDavis, 1992]. An

example of this technique is defining a specific range cansfoa a variable.

Automated code generation techniqués the OO and agent-based paradigms

grow in popularity, there are an increasing number of dpweént environments that
allow the programmer to define, graphically or by some maskapax, the structure of
the object. In many cases, the environment generaentie necessary to implement

the specified structure. Automated code is less pronentactical errors that must be
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identified and corrected, enhancing ease of model vdidita These techniques provide
the added benefits of requiring object (agent) structures faricoding and providing

structural representations that can be used in comratia werification techniques.

3.2.1.2 Static Verification

Static verification techniques are techniques implementedtprrunning the
model used to ensure accuracy in the executable modese Thethods are concerned
with the implemented accuracy of the model source cédecomputer programming
environments become more sophisticated, many of thesedsdthve been automated
[Balci, 1994], and current language compilers perform vetifio activities that fall into

the static verification classification.

Code "walkthrough” Code “walkthrough” encompasses a number of techniques

used to verify the accuracy of programming code beforeuéieec The techniques range
from the informaldesk-checkin§Whitner and Balci, 1989], where the programmer steps
through the code, tosiructured walkthrouglprocess [Sargent, 1991, 1996; Balci, 1994],
a formal process involving a review team charged withuaedg the model relative to

specifications and standards and reporting deficiencies.

Structural verification testStructural verification tests ensure the structutbef

model does not contradict knowledge about the structure aihceptualized system.
During structural verification, data and logical flowclksazan be compared to the
structure of the executable model to help identify structi&ficiencies in the model
implementation. These tests also are used to idenidyverify assumptions are

correctly implemented [Forrester and Senge, 1980].
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In the case of OO or agent designed models, the ddtjeictures can be
compared to the conceptual entities. Multi-agent modetmiication techniques in this
category include verification of communication states protocols that prevent
deadlocks. Some agent development environments perfanmenication verification

as a component of their automatic code generationiunsct

Syntax checking Syntax is the “grammar” that allows higher levelgraomming

languages to be translated into machine executable codg. Midddern model
development environments provide surface-level syntax sheekhe code is typed.
Compilers, the automated translators, perform additsyrathx checks and provide a
host of structural information when generating the exaatatmodel that can be used to
verify variable declarations, modular structure, and sutienaterfaces [Whitner and

Balci, 1989].

3.2.1.3 Dynamic Verification

Dynamic verification techniques are those that regheesxecution of the model
and test model correctness under run-time conditidhese techniques entail gathering
observations of executing system behavior. Some dyneenification techniques are
aided by automated tools available in model development emvé&nts. More so than
with static verification, dynamic verification reli@sore on the model programmer to
develop and implement the tools used to evaluate thectioess of the executable

model. Examples of some of the more common techniqedsand below.

Model instrumentation Model instrumentation is the technique whereby the

modeler builds verification cues into the execution dodarovide data necessary for
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verification. As the model executes, the instrumematbde collects information and
reports on the system states, both model and program.nidrisation is then used to

determine model accuracy.

Most modern development environments go a step further bydprg
automated instrumentation aids through a runtime debug mibgcally, the runtime
debug mode provides for line-by-line execution of the modekhvallows watches to be
set on different variables, execution breaks (or paagetesired points in the execution,
access to stack contents (representing sub-modulerdalis), and other execution state

information.

Testing based on model development stratedgid®ere are two purist approaches

to testing, top-down and bottom-up. The actual choibased on the model
development strategy used.tap-downdevelopment, model construction begins with the
sub-models at the highest level and ends with the subisnatdéhe base level.

Conversely, bottom-up development begins with the coctbin of the base models,
models where no more decomposition is possible or desjrafdl ends with the

integration of all sub-models to form the top level mode

Top-down testingpegins by testing the model at the highest level. sGallower
level sub-models are simulated (also known as “stubbél o each sub-model is
developed and tested, it is added to the global model amyotbed model is again
subjected to testing. The process continues until theléaslemodels have been

integrated into the global model.
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Balci (1994) notes top-down testing has advantages aadwvdistages.
Advantages include: early existence of a working modeltdpdevel model becomes a
natural environment for testing lower level sub-modeld;@mors are localized to newly
added sub-models. Disadvantages, however, arise froradihhat testing can only
occur by running the entire model. This results in discongaifiorough testing of the

sub-models and their integration.

Bottom-up testindpegins by testing each sub-model thoroughly and when
sub-models belonging to the same higher level model arpleted, they are integrated
and their integration tested. This continues until@tmodels are integrated forming

the completed model.

Whitner and Balci (1989) note bottom-up testing has advantages an
disadvantages. The primary advantage is a more thotestyhg of sub-models, since
sub-models typically represent less complex functibaa their aggregates. The main
disadvantage is that sub-model testing requires indivithaadrs, or harnesses, for each

sub-model, and the development of separate drivers ogmiteeexpensive.

Sargent (1996) writes that bottom-up and top-down testingpe@ombined to

conductmixed testing

Path Analysis Path analysis attempts to identify the possible siaths the
model can take and, by generating appropriate input datacttfte model along each
path. Complete path testing not only ensures each pathecreached, but also checks

that paths are properly taken with intended values.
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Boundary analysiBBoundary analysis methods are used to check model behavior

at and near threshold values. These thresholds lesvat which system state changes
take place, as well as along variable limits. This tepiais used in deference to the fact

that errors lie along boundaries [Whitner and Balci, 1988¢iB1994].

Execution monitoringExecution monitoring encompasses a variety of techniques

used to provide a description of the model's activities duexecution. Three such
techniques are tracing, visualization, and assertion algecKracingis automatically
getting all intermediate results during program execytideijnen, 1995a]. The trace,
the recorded log of the intermediate results, is apdlya determine whether or not the
program is functioning correctly (as intende®jsualization oranimation provides for
visual inspection of the modeled system during execution,hnd@a highlight
unintended system behavior&ssertion checkingqternally monitors system states or

specifications and reports when the simulated systerate®Intended limits.

3.2.2 Validation classifications

Validation determines how accurately a model represbatseal-world system.
There are three broad approaches to model validatianvédity, empirical validity,
and theoretical validity. These categories broadlyesent the majority of validation
technigues available using experts, observed data, and cidwory. Just as all
validation techniques may not be applicable to every madglien application may not
need to achieve each facet of validity [Davis, 1992]. fheof techniques (and
ultimately the amount) used for any particular applamabf the model is a function of

the level of acceptable risk involved in using the model.
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3.2.2.1 Face Validity

Techniques used to establish a level of face validity angapity concerned with
providing confidence that, on the surface, the model appeassnable to those
knowledgeable about the real-world system [Law and Kek6f]1]. Techniques in this
category range from “eyeballing” [Davis, 1992] to formalifgrtests. This approach to
validity is based on the notion of a rationalism apgloto model validation [Naylor and

Finger, 1967].

Rationalism[Naylor and Finger, 1967]: The conceptual model, developed
through study of the system and conversations with tstesyexperts, is reduced to a set
of postulates. These are then presented to the ekperéfutation or adjustment. When
these postulates are sufficiently rigorous in the judgmokthe experts, then the resulting
model has high face validity. It is supposed that witlueate translation into the

executable model, that model too will have high face iglid

Graph-based analysissraph-based analysis brings together many components

used in other verification and validation to establishfélce validity of the model.
Within the context of a formal walkthrough, graphical repreations of the conceptual
model, including system and entity structure, are preddatthe system experts for

review.

Prototyping In prototyping, a rough, first-cut executable model is preduwnd
evaluated for basic behavior. The intent is to vadéidaé conceptual model and to
identify significant areas that were neglected iriatsnulation. In addition, the

prototype can be used for initial sensitivity analyses amdetatify significant parameters
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affecting system behavior in the model. These prototygesanetimes built in a
language specific for prototypes. This means later re-gadithe prototype into a

production language.

Animation Though animation is also classified as a verificat@chnique, it can
be a powerful tool in helping to build face validitynstead of looking for unintended
system behavior (verification), system experts reviesvhodel's behavior to determine
if it is representative of the real-world systemihd behavior is not representative of the
real-world system, the experts can help in the ideatibn of conceptual errors that led
to the questionable behavior [Kleijnen, 1995a]. A key assumpdiocourse, is that the

animation-to-model linkage has been verified and is thagrate.

Turing test A formalized Turing test [Russell and Norvig, 1995; B&al®94,
Kleijnen, 1995a] involves mixing a number of real-world sysparformance indicators
with those produced by the simulation. System experthaneasked to identify which
are from the real-world system and which are fronsihmulation. The less the experts
can distinguish correctly between the outputs, thbdrighe degree of validity in the

model.

The Turing test does require real-world data. If theutation is of a non-existent
or purely theoretical system, then there may noebéworld data for comparison. For
example, in the case of modeling combat or other sysidrage costs are extremely high
in time, money, or life, there may be some reallsystem data, but it may be too scant

for sufficient Turing tests.
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Documentation When the model code is documented to demonstrate data

sources, assumptions, and component validation reguiezomes a valuable tool for
establishing face validity. When the model is subjecteditd party, or independent,

validation, this type of documentation is critical.

3.2.2.2 Empirical Validity

Given that the purpose of a model is to representrgplax, real-world system,
the aim of empirical validity techniques is to provide afidation as to the accuracy of
the model with respect to the observed behavior ofytbiei under study. These
technigues are used to establish a scientific basis fdidemce, but they stop short of
offering absolute proof that the model results are anrate representation of the

real-world system.

Statistical TechniquesStatistical techniques are particularly useful when th
system is observable (i.e. it is possible to colleetasonable amount of data on its
operational behavior [Sargent, 1996b]) and output data ardausedhpare model output
with that of the real-world system under sufficiertignilar configurations. There have
been many statistical techniques proposed for use in valdait models (and sub-
models). Balci (1994) presents a table of 18 different tgalesiand associated

references.

Depending on the risk associated with the model, absadaigracy may not be
necessary. Some “weak” regression techniques have bm@wspd that indicate some
appropriate correlation between the model and real-vegdtem under similar inputs can

be a valuable validation tool as well [Kleijnen, 1995a].
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Graphical Validation In cases where statistical tests are not apprefratause

the assumptions cannot be satisfied, observations oéahsystem are too limited, or the
output process is highly non-stationary, non-statistioenparison methods are available.
Sargent (1996b) presents subjective, graphical methods of dsamparcluding

histograms, box plots, and behavior graphs.

Sub-model Validation Sub-model validation provides a strong indication that

composite model is also valid. However, since erriesampounded in the aggregation
of validated sub-models, it is not sufficient in andtsé¢if. Multiple sub-models that
produce acceptably accurate results may, when integrattedne another, produce
system results outside acceptable bounds [Balci, 1994pite of this complication,
sub-model validation is an important component of buildiogfidence in the overall

model.

Historical or field test dataWhen the real-world system does not exist,

comparison to field test or historical data is often fidess This data can give an
indication of how the proposed system should (or dittalee, and a favorable

comparison to the model behavior can build confidencleeimtodel.

Comparison to other model€omparing a new model to another well accepted

(validated or not) model is another empirical validatiechnique. However, there are
two issues that must be addressed. First, the succss wiethod depends in a large
part to the degree the “old” model is deemed corrector®kadn the case that the “new”

model is significantly better than the “old,” the deggancy may cause results from the
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new model to be unjustly doubted. However, more confelean be built when results

from both models, established and new, agree.

3.2.2.3 Theoretical Validity

Theoretical validity encompasses the technigues usedatalisktthe extent to
which a model conforms to scientific theory. The teghes in this category are largely
used to prove mathematically a model is correct. iBh894) notes that “current state-
of-the-art formal proof of correctness techniques anplg not capable of being applied
to even a reasonably complex simulation model.” Hes goeto list seven common proof
of correctness techniques: induction, infereieealculus, logical deduction, predicate

calculus, predicate transformation, and proof of conexss.

Some of the theoretical validation techniques arerigpdipplicability in agent-
based models, particularly in the validation of siragld multi-agent systems comprised
of intelligent agents. Planning and problem solving functaresoften based on
predicate calculus and logical deduction. Theoretighdiation techniques are being

used to prove that the knowledge-based model is coredatidd and Zaidi, 2001].

Additionally, theoretical validation of sub-models mag/possible. For example,
a sub-model calculating a shortest path may be provedematitally correct.
Theoretical validation of sub-models can be a sigaificstep in the validation of the
aggregate model, though, as before, it is not sufficiecesrther sub-models can

introduce enough error to “invalidate” the combined model.
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3.3 V&V Methodology

As previously indicated, early computer simulation reseans were aware that
V&V should be an integral part of the modeling processhradn (1972) proposed a five
step modeling process (adapted for Figure 3.2) that containg of the basic
components of modeling processes used today. Step 1, sysésis, involves
defining the experiment, asserting the assumptions, ahgetiosy the system into a
conceptual model. Step 2, system synthesis, is ttanggthe conceptual model into an
executable (computer) simulation. Step 3, verificatincludes all techniques to ensure
that the executable simulation is an accurate repegampf the conceptual model. Step
4, validation, encapsulates all methods used to buildoasdidence that the model is an
accurate representation of the real-world processsbesy Finally, step 5, model
analysis and inference, includes conducting the experimengubsequent analysis

necessary to support the purpose (intended application)ispeoif the model in step 1.
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System Analysis

v

System Synthesis
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Verification
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Validation
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Model Analysis
and Inference

Figure 3.2 Modeling and Simulation Process

Though Figure 3.2 generally contains all steps in morentlygaroposed M&S
processes, it does not acknowledge the iterative natii&sf Feedback from both
verification and validation can be (and is) used toeefhe conceptual and executable
models to make the simulation more robust when expetatien and analyses are
ultimately conducted. Recognizing that the V&V procestemstive, Law and Kelton
(1991) proposed a simulation study process including fe&dbEue Law and Kelton

process was generalized for the modeling and simulatiaegsshown in Figure 3.3.
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Figure 3.3 Generalized Modeling Process with Feedback

The Law and Kelton process defined in Figure 3.3 makes $degra
improvements to the process shown in Figure 3.2. Hieste are three points of
feedback that are used to improve the fidelity of the maadger development: 1) after

development of the conceptual model (validation); 2y afbeling the executable model
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(verification); and 3) after validation runs, but beftite experimental runs (validation).
Second, it recognizes the necessity of taking stepsittat@the conceptual model

before translating it into the simulation environment.

Sargent (1996a) presents a more compact modeling proces® (Eidur In
Figure 3.4, the modeling process begins with the “ProblertyEbbx and moves
clockwise as the modeling process progresses. This refaése of the modeling
process is particularly useful in that it depicts tl@A\activities (outside, solid arcs)
occurring in conjunction with the model development, codand experimentation
(dotted lines connecting the modeling objects). This veemare consistent with the
V&V literature, which stresses ongoing and continuous V&mughout the lifecycle of
a model [Law and Kelton, 1991; Balci, 1994; Sargent, 1996a; NayahMollaghasemi,
1998]. Additionally, it links the data, central to modelirdgfity, with the overall

modeling process.
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Figure 3.4 Simplified Modeling Process (Sargent, 1996a)

Despite the various models indicating where V&V efidselong in the modeling
process, there is neither a common template indgathich techniques should be used,
nor is there commonality or agreement indicating havemv&V is ultimately
necessary. Instead, it is left to the organizationariddividual employing the
simulation to determine the methods and extent of V&Wres needed to inspire

sufficient confidence in the simulation results.

Chapter VI presents a case study of the verificationvahdation process
developed in this research generally following the modelinggss found in Figure 3.3,
but expanded to include conceptual model feedback from betverification and

executable model validation processes as indicatedyurd-B.4.
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3.4 Does V&V Ultimately Matter?

V&YV is quite important. However, a model that has beén validated may not
be useless. There are cases when a model cannotdagedhgainst any knowable data,
experimentation is too costly (by some measure: dess, Irisk, etc.), cases when only
the conceptual model and/or sub-models can be validatéie anodel is the best-known
(best-guess) representation of the real-world system¢ampaign-level models of
combat). Inthese cases, attempts to V&V the comgplatodel may be incomplete at
best, but at the same time, the model may be negeddadges (1991) argues that in
these cases, the models can be useful evaluationéwels though their predictive power

is suspect [see also Hodges and Dewar, 1991].
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V. Bay of Biscay Agent-Based Simulation

Agent-based combat simulations to date have been retegmasmall, toy
scenarios with sometimes tenuous links to real-world dipesa As a result, little can be
said about the true degree to which agent-based models #icalalpo solving real-
world military problems. This chapter addresses this voiddsgribing an agent-based
combat simulation built around an historical exampleftensive search. The result is a
first-ever agent-based mission-level model demonstratgignificant level of validity
(detailed in Section 4.4) and potential applicability to dewiange of modern scenarios,

including military, law enforcement, immigration, and mmiztional treaty verification.

The real-world operation selected for the simulatippliaation was the offensive
search for U-Boats in the Bay of Biscay by the Allferces during World War Il. This
chapter provides a brief historical description of thiiedloperation, details the
assumptions and implementation of the computer modelapplicability of the

simulated scenario to modern military and domestic Sgqurdblems.

4.1 The Historical Operation

German U-Boats operated against Allied shipping in theiN&ttantic from
1941 through the end of the war in an effort to reducshipments of war-time supplies
to Great Britain. Following the fall of France, mariytteese submarines operated from
ports in occupied France, crossing the Bay of Biscaytimt North Atlantic, where they

hunted for Allied transport ships. Once they left Bag of Biscay, the U-Boats could
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operate outside the reach of Allied aircraft support. afime in 1942 and 1943, this

offensive was so successful that Great Britain’s wartefvas put in great peril.

While the Allied forces had little hope of finding and deging U-Boats once
they reached the Atlantic, the Bay of Biscay wad wihin the reach of Allied aircratft.
Additionally, the amount of U-Boat traffic to and frahe French ports, necessitated by
maintenance and resupply/refuel demands, ultimately ntleainthere was sufficient
density of targets within the Bay of Biscay to warremtmitting resources to conduct
anti-U-Boat efforts. As a result, the Allied forcegginning in 1941, hunted for the

U-Boats in the Bay of Biscay.

Both the Allies and the Germans were able to consigtadt technological
advances to their forces during these U-Boat operatiddditionally, as each side was
able to identify their opponent’s new advance, theyevadrie to modify their own tactics
or improve upon existing countermeasures to eventually netipatinnovation. As a
result, the “measure-countermeasure” seesaw of teajynalw tactics is prominent

throughout the operations.

Additional historical background on the offensive searctiné Bay of Biscay can
be found in [McCue, 1990], and an extensive record of thegponding operational

analyses may be found in [Waddington, 1973] and [Morse and Kjm9a8].

4.2 Model Description

The Bay of Biscay agent-based simulation was buiieppoduce the results of

the historical operation in both qualitative and quantatheasures. A development goal
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was to keep the simulation relatively simple by includingy the most significant
factors and to make explicit use of agents. As atreasgdumptions were made regarding

the simulated system.

4.2.1 Assumptions

Constructing the Bay of Biscay agent-based simulagguaired assumptions
about the environment, the aircraft agents, and the &i-8gents. The following sections
detail the primary assumptions made to represent opesatimhtactics from both the
Allied and German perspectives as faithfully as possililgowt including an inordinate

level of detail.

4.2.1.1 Environment

Daylight Both U-Boat surfacing policy and aircraft effectivenegere governed
by day versus night conditions. Within the simulati@ay” is defined as the time
between nautical dawn and nautical dusk (i.e. sun is ali@fewith respect to the
horizon). Daylight computations are approximations nvaitle respect to a single point
near the geographical center of the Bay of Biscay anliedpp all locations in the
simulation. Since daylight times do not differ sigrafi¢ly within the area encompassed
by the simulation, the single point calculation doesimobduce an unreasonable amount
of “daylight” error. In fact, in [McCue, 1990], daytinealculations failed to include
dawn and twilight times, which resulted in underestioratf the amount of daylight by

as much as 30-60 minutes of light daily [McCue, 2002].
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Sensors All detection sensors assume conformity to the lrevégbe Law. The
Inverse Cube Law states that the probability of deieas inversely proportional to the
cube of the distance between sensor and target. S3usnption is supported by field
testing performed during WW 1l [McCue, 1990; Waddington, 1973; ManseKimball,

1998].

The Inverse Cube Law is an important assumption@evides a convenient
closed-form solution for combinations of conforming detatsensors. When more than
one sensor is used, the resulting sweep width, or eféestimsor range, is approximated
as the square root of the sum of squared sweep widthsefardividual sensors (4.1).

Specific sweep widths for independent sensors werengot&iom [McCue, 1990].

Vvtotal = ﬂivviz (41)

where W is the sweep width of th& sensor
n is the number of independent sensors.

There are two issues important to independent sensor matiali calculations.
First, the approximation breaks down when the numbamependent sensors, n, is
increased sufficiently. For example, no combinatiosesfsors would allow for a
positive probability of detection for objects beyond tbhezon. Second, the probability
of detection, given by (4.2) [McCue, 1990], provides for pasiprobability of detection

regardless of the distance between the sensor pla#iodnthe target.

o)
P(x)=1-e (4.2)
where W is the sweep width computed by (4.1), and

x is the distance of target-sensor separation.
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Neither of the two issues above are factors in imsilation. The number of
independent sensors is kept quite lowvx (3), which is sufficiently small to avoid an
improbably large combined sweep width. A random detectieglcis made only when
a target is within the sweep width of the sensor platfpr< W, (4.2)) to avoid making
nonsensical probability checks when the target is isiptsdistant from the searcher.
This leaves a certain (minor) amount of detection grdibaunaccounted for, but the
savings in computation time gained, as well as avoiding nemsgaletections,

warranted this sacrifice in accuracy.

No-Fly Zone The French ports used to base the U-Boats were heaidnded
and protected by German air patrols. Additionally, U-Bde&ving and entering port
areas had air escorts available to them. Theredorellation bombers generally standoff
100 NM from the coast of France in acknowledgement efttireat. Likewise, U-Boats
take advantage of the escorts by running entirely on thacguoince they move within
100 NM of the coast. More specific behaviors regardingegen of the bay within 100

NM of the coast of France are found in the following tsections.

4.2.1.2 U-Boat Assumptions

Information governing the German U-Boat tactics, padicand operation was
significantly more difficult to assimilate into thaerailation than for the Allied agents.
This was primarily due to conflicting information betweemitble sources. In cases of
conflicting information, especially between non-Germamrses, the source having the
latest date of original publication was used, since tylgitiae later studies had access to

more declassified sources, both German and Allied.
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U-Boat agents within the simulation must spend a mimimdi 3 hours surfaced
for each 100 nautical miles (NM) traveled to fully rechaitwgr batteries. This is
required because U-Boats involved in the Bay of Bisgeyration were not outfitted with
the snorkel, developed very late in the war, which wollddvathem to operate with their
diesel engines while submerged. Therefore, within thelation, all U-Boat agents
simulate battery operation while submerged and dieseatpemvhile surfaced. Upon
battery depletion, the U-Boat agent would coordinateitmeg of its surfacing to
coincide with its surfacing policy (i.e. day or night)otB battery charge and discharge is
assumed to be linear with respect to time surfaced @ndisttraveled while submerged,

respectively.

U-Boats traveled to and from port via an essentiallst&¥dest trajectory within
the Bay of Biscay [McCue, 1990; Waddington, 1973]. U-Boatenmant is 10 knots

(NM/hour) surfaced and 2.5 knots submerged.

U-Boat agents leave port with thirty days of suppliestand their return from
operations in the North Atlantic to arrive back irrfpwith no supplies remaining.
Additionally, the effect of limited U-Boat refueling s¢a is implicitly modeled by
allowing a 0.25 probability of extending their time in thertth Atlantic by 30 days. This
fraction of the operational fleet also included a compractice of commanders
extending their operational tour to 60 days by stretchinig ithigal resources [McCue,

1990; Morse and Kimball, 1998].

Throughout the war, anti-aircraft artillery from tbeBoats was ineffective.

Therefore, it was generally German policy to submergenvtiied aircraft was sighted.
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Therefore, U-Boat agents in the simulation submergeeichately upon detecting an
aircraft, regardless of their battery recharge st@ece submerged, these agents will
travel submerged until their battery level is depletedcatdinate the timing of their

surfacing to coincide with the fleet’s surfacing policy.

Regardless of surfacing policy, the U-Boats in the satmuh operated in a
surfaced state while they were in the 100 NM coastabnegriotected by German air

patrols.

Perhaps the biggest unknown factor regarding actual U-Baatyacbncerned
the time spent in port, and this remains the biggest umkmegarding the link between
the Bay of Biscay agent-based simulation and thewedt operation. There was
simply not enough data available to support anything but measassumptions. In the
simulation, U-Boat time in port is modeled as a unifoamdom variable between 25-40
days, inclusive. This is derived from [Morse and Kimball, 1998ich states that the
U-Boat would spend “about 30 days” in a port operating undeafacity (no strict
gueuing argument is attached to the word capacity in thenos). However, from other
sources, most notably [McCue, 1990], the French ports viene choked beyond their
ability to service all the boats, especially towardehd of the war when German

resources became scarce.

4.2.1.3 Aircraft Assumptions

Over the Bay of Biscay, Allied aircraft operated witipunity, since German
U-Boats had ineffective active defenses (i.e. antrait artillery) and the search area

was outside the range of German fighter escorts.léittere were undoubtedly accidents
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involving the loss of aircraft over the length of tlenpaign, the offensive search for
U-Boats constituted a small force of aircraft, areldlailable fleet used for this purpose
was not impacted by such occurrences. As a resulg iheo attrition due to accident or

anti-aircraft defenses modeled within the simulation.

The simulated Allied aircraft agents standoff from¢bast of France to avoid
enemy air patrols and escorts. Agents generally dontet #he 100 NM coastal no-fly
zone region. The one exception is the case thairemaft locates a U-Boat prior to the
U-Boat entering this region. In this case, the aftdadlows the U-Boat into the region

to attack it. Following the attack, the aircraft imnagdiy exits the hostile region.

Aircraft agents move at a constant speed of 120 knots, areffdtts of weather
once a mission is launched are not simulated. Oroerae, each aircraft flies up to
70% of its fuel load, or until it has expended its munitiomkis fuel factor is supported
by subsequent analyses [Waddington, 1973] in spite of paliigating pilots were to fly

up to 80% of their initial fuel capacity.

Simulated aircraft can detect only surfaced U-Boatsce®potted, an aircraft
pursues the U-Boat until the attack is made, to the sxaiwof all other considerations.
In attacking a U-Boat, the aircraft agent expendsnitseepayload of munitions and

returns immediately to its base.

Weather and maintenance problems were a big issue witbctes successful
Allied operations, and each factor is modeled stochdigticat the beginning of each
simulated day, a random draw is made to determine if €a¢h&r grounds the entire fleet

for that day. Maintenance, on the other hand, afi@otsaft agents individually and is
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determined immediately prior to take-off. Once in thiethe aircraft agents do not abort
due to poor weather or maintenance problems. Aircraftrréo base only for fuel or

munitions.

4.2.2 Conceptual Models

In building the Bay of Biscay agent-based simulatiba,dcenario was
decomposed into two separate processes, U-Boat Flow am@fAFlow. Each process

models the operational and support elements of the respémices.

Figure 4.1, adapted from [McCue, 1990], illustrates the lwasiceptual
processes influencing the flow of the U-Boats to and frioeir operating zone in the
North Atlantic. U-Boats are individually assigned teaf five French ports and enter
the Bay of Biscayn routeto their operation zone in the North Atlantic. ThdBoats
exit the Bay of Biscay when they reach the Norttaatic. Operations in the North
Atlantic, to include refueling, are not explicitly moee! Instead, the U-Boats remain
outside of the Bay of Biscay for a length of time pjonal to the amount of provisions
remaining when they initially exit the bay. Refuelisgmplicitly modeled by a fraction
of U-Boats extending beyond their initial provisions byaalditional thirty days. When
the provisions remaining reach a critical level, U-Baatenter the bagn routeto their
assigned port facility. Additional U-Boats enter simulation from the German
shipyards according to historical rates specific forgiken time period being simulated,
arriving in the North Atlantic with 30 days of provisiong-Boats leave the simulation
when sunk by Allied aircraft in the Bay of Biscay. e€l$imulation does not account for

U-Boats sunk during operations in the North Atlantic.
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Figure 4.1 U-Boat Flow, Conceptual Model

Figure 4.2 illustrates the influencing processes of conductiagsive search in
the Bay of Biscay by Allied aircraft. This model igrgficantly simpler than the
previous agent flow model. Aircraft are assigned to glsibase, enter the Bay of

Biscay to perform their search, and egress when faehes a critical level or their

munitions are expended.
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Figure 4.2 Aircraft Flow, Conceptual Model

The two conceptual models provide for interactions betvilee two agent types,

which occur only over the Bay of Biscay.

4.2.3 Conceptual Model Validation

Before developing the executable model (code), a fornmdegual model was
developed. Several techniques were used to establish idhiey\afl this conceptual

model, and these are discussed below.

4.2.3.1 Validation against previously validated models.

In the years following WW I, several mathematicaldats have been developed
to analyze the anti-U-Boat operations in the Bay atBy. McCue (1990) details his
model and presents a graphical depiction of his conceptwidlrabthe U-Boat flow

through the Bay of Biscay. The model elements arsistamt between the two models.
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That is, the conceptual model depicted in Figure 4.1 agriledeCue’s U-Boat
circulation model with only minor differences in tlexél of fidelity for U-Boat

operations within the North Atlantic.

There are two differences between the proposed Bajso& model and
McCue’s U-Boat circulation model. First, unlike McCusaisdel, the U-Boat flow
model of Figure 4.1 does not account for U-Boats sunk iNtréh Atlantic during their
operational tour. Second, McCue’s model explicitly\aidor multiple refueling
opportunities for U-Boats in the North Atlantic, whilee model of Figure 4.1 does not.
Instead, U-Boats in the proposed model are given desipportunity to extend their

operational time by 30 days according to historical figures.

The differences in the U-Boat models were not deenggtfisiant for several
reasons. First, the differences outlined abovehamredsult of a slight difference of focus
for the two models. While, the proposed model concegan measures of
effectiveness (MOESs) within the Bay of Biscay, McQueiodel was intended to provide
additional insight into the effect on Allied transpartshe North Atlantic as well.
Therefore, additional fidelity in his model is more impmitto his measures. Second,
McCue’s model was intended to model the entire 4 yeaiticth while the proposed
model was built with a much shorter (6 month) timenkea The shortened time frame
makes U-Boats sunk in the North Atlantic a less sigaifidactor. This is due to the fact
that U-Boats were much more likely to be sunk in thethan in the North Atlantic

[McCue, 1990].
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4.2.3.2 Prototyping and Subject Matter Experts.

Following the development of the conceptual models, a pymoras developed
and presented to subject matter experts [McCue, 2002], @etiiter for Naval Analysis
(CNA) in order to refine the conceptual models. Reviewheysubject matter experts
suggested inclusion of the U-Boat reinforcement compandfigure 4.1, which was
born out by subsequent output analysis. Additionallylementation of the models was

modified to prevent the Allied aircraft from flying ovéret occupied French territories.

4.2.3.3 Preliminary Output Analysis

In addition to the subject matter expert review, prelimjrutput analysis
suggested that the reinforcement component of Figure 4 heextled, and there were
two indications for this. First, without German rerfements, the number of U-Boat
sightings trended down during the simulation as the @erfteet was attrited.
Simulating the reinforcement process according to therigal numbers alleviated this
problem. Second, without the reinforcements, the U-Boatals into the bay were not
distributed Poisson, as were the historical arrivalse arrival process with

reinforcements was much closer to Poisson distributsgldsction 4.4.4).

4.2.4 Conceptual Model Implementation

The Bay of Biscay agent-based simulation was writtielAVA® (version 1.4.1)
and executed on a 2-GHz Pentium 4® PC with 256 MB of RAM runagndows®
2000 operating system. The simulation is comprised of 38ata(objects) with more
than 10,000 lines of code including internal documentation. sirhelation used

between 3 and 6 seconds elapsed time per simulation dapddepen the number of
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agents active (i.e. in or over the Bay). Within thrawdation, each U-Boat and aircraft is
an agent running in an independent thread of executionadithional threads for the

GUI controls.

The simulation itself was written to operate in afyhoee modes. The first two
modes allow for demonstration and model verification ¢deing). One provides for
running through the operating system (command prompt), arstiosd provides for
running the simulation through a JAVA capable web browBaplications are not
possible when running in either of these modes, and therefostatistics are kept. The
third mode of operation, called batch mode, provides aadethrunning a user-
specified number of replications, and statistics are &e@ number of measures of
effectiveness (MOE). Batch mode is the only mode gppate for practical quantitative

analyses.

Agent and simulation design data was compiled accorditigetiollowing
hierarchy: 1) historical fact as found directly from sasrcredited to Allied and German
participants; 2) published studies directly related to tfeneive search in the bay;

3) data derived from raw numbers in one or more of theqating sources; and 4) good
judgment (operational expertise) when the three prexdousces fail or contradict one

another.

4.2.4.1 Agent Decisions and Movement

The agent environment was discretized into a 800 x 680 pixkgith each
pixel representing about 0.9024 NM for a total of just under@®@LNMF of territory

simulated. Each agent is capable of traveling a spelisiance (STEPSIZE) based on
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speed and simulation time elapsed since its last mokes. provides a grid of discrete

locations to which an agent can move during an updaté-{geere 4.3).

Figure 4.3 Possible Agent Moves

All grid points (nodes) within the circle (of radius ST&EIZE) are reachable in
the next possible move. The agents choose betwe@oskédle nodes by evaluating a
penalty function and selecting the node with the mimmpenalty. Aircraft and U-Boat
agents utilized different penalty functions within a decidiierarchy particular to each

agent type, aircraft or U-Boat.

4.2.4.1.1 U-Boat Behavior

U-Boat agent behavior is determined through a hierarchézasion process
based on its current state. A U-Boat agent makes lmhhdecisions according to the

hierarchical priorities listed below:
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U-Boat Agent Decision Hierarchy

1. Avoid contact with Allied aircraft (surfaced U-Boats ynl
2. Battery state

3. Conform to surfacing policy

4. Move

Avoid contact with Allied aircraft The foremost priority for a U-Boat on the

surface is to avoid contact with the Allied aircrafisiing the Bay of Biscay. Each
surfaced U-Boat attempts to detect any aircraft witlsic@mbined sensor range. If an
aircraft is detected, the U-Boat submerges. Otherwisg]ecision falls to the second

tier of the hierarchy.

Battery State If the U-Boat does not detect aircraft within itsntbned sensor
range or it is submerged, then the state of the bathemge is the next factor in
determining its actions. If the U-Boat is on the stefand the batteries are fully
recharged, then the U-Boat is prepared to submerge. tiieasther hand, the U-Boat is
submerged and the batteries are depleted, then the UsBwapared to surface. Given
these two conditions, the decision to change submezggates falls to the third tier of
the decision hierarchy. In the absence of either sktlhenditions, the U-Boat maintains
its current battery state (i.e. charging on the sertaadepleting while submerged), and

the decision falls to the fourth tier (Move).

Conform to surfacing policy The third tier of the decision hierarchy ensures that
the surfacing policies are enforced. If surfacing or submeegerniteria are met, then the

U-Boat chooses to change its submergence state to iheddgate value. Otherwise,
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this tier forces the U-Boat to maintain its currentestantil the policy criteria are

fulfilled.

Move. The fourth level of the decision hierarchy determihescoordinates the
aircraft agent moves to during the current agent update.mblve coordinates are
selected via a penalty function evaluation. The perailtynoving to some proposed
coordinates (i, j) is comprised of four component perafie= 1, 2, 3, 4). Fork =1, the
penalty component is computed as the 2-dimensional Eucldistamce between the

proposed move location (i, j) and the ultimate goal coates (¥oa, Ygoa):

P = (o =) + (Vgou = )7 fork=1. 4.3)

The remaining penalty components represent environmerdallédge of past
interactions (events) between the opposing forcé® elvent-based penaltids 2, 3, 4)

have the same form given by:

2(n(05)d

<k> __ P
RI7=2AM®
type-k
events

Od<r, k=234 (4.4)

where d is 2-dimensional Euclidean distance from evenrdmates
r is the radius of influence of the event (degrames time)
A is the maximum penalty value for a k-type event
k = 2 for U-Boats attacked by aircraft
k = 3 for U-Boats killed by aircraft
k = 4 for aircraft sighted by U-Boats

The event penalties (4.4) are constructed to peoaitdexponentially decreasing
penalty extending out from the event coordinates ¢ertain radius. The initial radius is

user-selected and gradually decreases in lengtttiove This allows the agents to
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discount old information, placing greater emphasisiew information. The penalty
function provides a penalty that halves (half-tiistance) everyré NM from coordinates

of the event.
The penalty for moving to (i, j) is a weighted sofrthe component penalties,

<k> . . - -
P~ . The U-Boat agent, then, moves to the coordingitg, that fulfill

min{i W, Pijk>} (4.5)

for integer-valued, j such thaty (Xen —1)2 + (Youren: — §)° < STEPSIZE andw, is a

relative weight given the typlepenalty.

In the validation scenarios examined,®0 for k = 2, 3, 4. As a result, U-Boat
agents ignore information about contact with aitcagents and consider only the
distances between potential move coordinates anddhl coordinates. Equation (4.5),
therefore, reduces to a greedy algorithm for mining distance to the agent’s goal
coordinates. When following this path selectiogoaithm, the U-Boat chooses an E-W
direction of travel. The result, therefore, ar@blat agents moving as indicated in

[McCue, 1990; Waddington, 1973].

The last component of move determination is det@nginew goal coordinates if

(i, 1) = (Xgom Ygou) - I the U-Boat has reached its home port, themigaw goal

coordinates are set to its operational coordinates,the U-Boat schedules its departure

from port according to the in-port maintenance aggions modeled. If the U-Boat has
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reached its operational coordinates, then the agstits goal coordinates to its home

port and schedules its next update according tpliggremaining and possible resupply.

4.2.4.1.2 Aircraft Behavior

The aircraft search is accomplished via flying wedes of predefined waypoints,
in a particular search zone, utilizing a particidaarch pattern. Each waypoint
constitutes goal coordinates the aircraft movesatdwsequentially. Aircraft agent
behavior consists of a series of decisions thheeithanges the goal coordinates based
on the agent state or allows the goal coordinatesrhain the same. The criteria for
adjusting the goal coordinates are determined tir@uhierarchical decision process
based on an agent’s current state. An aircrafitagaekes behavioral decisions according

to the hierarchical priorities listed below:

Aircraft Agent Decision Hierarchy

1. Attack U-Boat

2. Search for U-Boat
3. Fuel determination
4. Move

Attack U-Boat The foremost priority for an aircraft agentasattack U-Boat
agents detected during its search of the Bay afdis If the aircraft agent is within
range of a detected U-Boat, signified by collocaid the aircraft and U-Boat agents at a
location in the Bay of Biscay, it makes an attagktacks varied in effectiveness over the
range of the operations, and the particular effeass numbers used for model

validation are found in Section 4.3.2. If, howewée aircraft is not within attack range
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of the U-Boat, the action falls to the fourth demislevel (Move). If the aircraft is
unaware of any U-Boat location, the decision fadlshe second tier of the hierarchy.
Following an attack, the aircraft sets its goalrdimates to those of the Allied base, and
on each subsequent agent update, enters the daeaisrarchy at the fourth level (Move).
The aircraft agent is precluded from any actioreothan a move toward the home

coordinates.

Search for U-Boat If the aircraft agent has not previously discedea U-Boat, it

tries to detect any U-Boats within its combinedssgmange. If a U-Boat is detected, the
aircraft sets its goal coordinates to those offikeovered U-Boat and proceeds to the
fourth tier of the decision hierarchy (Move). Qthese, the aircraft moves to the third

tier.

Fuel determination If the aircraft has not previously detected 8akt and

reaches 30% of its original fuel load, it setgyibsl coordinates for the home base. At
this level of the hierarchy, the aircraft contintesearch for U-Boats during subsequent

agent updates.

Move. The fourth level of the decision hierarchy detieles the coordinates the
aircraft agent moves to during the current agedatga The move coordinates are
selected via a penalty function evaluation. Theraft penalty function is a simple 2-
dimensional Euclidean distance between the possibiee nodes and the aircraft goal
coordinates. The aircraft moves to the integerdioates {, j) with the penalty valu®;;

satisfying (4.6):

R, =minf/(<gou ~1)2 + (Yaou — )7} (4.6)
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for all integer-valuedi(j) such thaty (Xoren =1)% + (Youren — 1)> < STEPSIZE

The last component of move determination is det@nginew goal coordinates if
(i, ) = (Xgom Ygou) - If the aircraft has reached a waypoint, thenrté goal coordinates
are set to the next waypoint. If the aircraft resched the home base, then the aircraft

schedules its next search mission and sets itscgoadlinates to the first waypoint for its

specific search zone and assigned pattern.

4.2.4.2 Aircraft Search

Aircraft agent search was concentrated in a seaoh covering the heart of the

Bay of Biscay measuring 200 x 350 Kisee Figure 4.4).

Figure 4.4 Search Zone in the Bay of Biscay

The search zone, in turn, was divided into nondapging search grids
measuring 50 x 50 N¥(see Figure 4.5). Aircraft in the simulation wessigned to a

specific grid within which to search for U-Boat ate
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—— 200NM ———=

350 NM

Figure 4.5 Complete Aircraft Search Grid

WW Il operations researchers determined that tecgeh angle optimizing the
chance for locating a U-Boat traveling on the stefaf the water was a 45° angle
[Waddington, 1973]. Since the U-Boats were assutmedove East-West (E-W),
searching aircraft would employ SE-NW or NE-SW shdines as much as possible. To
this end, a modified barrier search pattern [NCZ®0] was simulated for search within
each grid (see Figure 4.6). Moreover, the patiexs repeated until the agent either
sighted a U-Boat or reached a critical fuel leved aeturned to base. This search grid
size allows multiple passes through the patteran dor grids remote from the aircraft

base.
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10 NM

Figure 4.6 Modified Barrier Search Pattern.

Figure 4.7 shows the combinations of these seasé zonstructs. While the
actual size of the operational search grids useflllimd aircraft was not found in the
historical record, the agent’s searching behawimifarms to historical accounts
[Waddington, 1973; McCue, 2002]. Allied pilots weassigned search regions, and
pilots repeatedly covered their assigned regioit fwal limits forced them to return to
their base or until they completed a U-Boat attathke search zone concept, if not the
exact location or size, simulates the historicabrd as faithfully as the written accounts

allow.
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Figure 4.7 Aircraft Agent Search

The aircraft agents were actually capable of flyimgjtiple search patterns within
the search zone. In addition to the barrier sepattern used in the model validation
effort, each aircraft agent was capable of flying af five search patterns adapted from
the United States National Search and Rescue Supptdo the International

Aeronautical and Maritime Search and Rescue MgiN@ER, 2000].

In search and rescue operations, the NCSR mankiabatedges that choosing
an appropriate search pattern for search and regmrations is highly dependent upon
the given scenario. The five search patterns @vigilto each aircraft agent are the
parallel, creeping line, square, sector, and basgarch patterns. Each of these is
illustrated along with the assumptions under wigahh is considered the best search

option.
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When the last point of contact with the searchaifdatum) is not known with a
high degree of certainty and the search areage Jaither the parallel (Figure 4.8) or the
creeping line (Figure 4.9) search is preferablbe parallel search pattern is most

desirable when the target is equally likely to gmcany part of the search area.

10 NM

=
Z
o
e}
| ¢ 20 NM ¢

Figure 4.8 Parallel Search Pattern

The creeping line pattern, on the other hand,pgally employed when the
target is more likely to be in one end of the seaea than in the other. For example,
the presence of a current may indicate an increldsdihood of finding the search target
toward the down-current portion of the search assimplemented in (modified for)
the Bay of Biscay agent-based simulation, ther@isuggestion that the target is located
toward one end of the search zone or the otheerefdre, the creeping line pattern

resembles the parallel search pattern except Hrelsdirection is rotated 90°.
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40 NM

Figure 4.9 Creeping Line Search Pattern

When the point of last contact is well known orbsished within close limits
(i.e. suggesting a relatively small target searela) the square (Figure 4.10) or the
sector (Figure 4.11) search patterns are preferdiile square pattern is used when
uniform coverage of the search area is desiree s€btor search, on the other hand, is
used in scenarios where the target is difficulieétect, and the pattern provides for

repeated, overlapping coverage of the datum.

[ ) Qt ®
=
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[ ®

———— 50 NM ——

Figure 4.10 Square Search Pattern
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Figure 4.11 Sector Search Pattern

Finally, when the target is fast-moving or wherirargy current is present in the
search area, the barrier patrol search patternr@id.6) is the preferred search pattern.
The pattern provides concentrated search aroungkttieter of the search zone with

repeated revisiting of the datum.

In addition to the capability to fly the above figearch patterns in the non-
overlapping search zones, each aircraft agent blag@ perform the search using an
overlapping search zone grid. In the overlappeaych, the search zones measured
100 x 100 NM and overlapped each of the adjacent zones by 50 W search region
was the same as depicted in Figure 4.4 and Figdreedulting in 18 search zones
contained within the region. Again, each of tiwe fsearch patterns was available within

each of the overlapping search zones.

Inherent in search and rescue operations is thergg®on of a cooperative target,
that is, the target of the search is either actiwedrking to aid detection during the
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search or, at the very least, not actively trymgvoid detection. The Bay of Biscay

search scenario involves uncooperative searchttafige the U-Boats are actively acting
to avoid detection). Results comparing the seafigttiveness of all five search patterns
in both the non-overlapping search zones and tedapping search zone are reported in

[Champagneet al, 2003a; Champagnet al, 2003b; Carl, 2003].

For the purposes of model validation versus thitdal record, the modified
barrier search pattern was selected as the patieshlikely to conform to the historical

accounts, and thus it is the sole pattern used.

4.2.4.3 Agent Strategy and Adaptation

The strategies of both the aircraft and U-Boat &gyare based on the possibility
of interaction between the opposing agents. Tiweadi agents want to maximize the
chance of finding (interacting with) a U-Boat. THeBoat agents want to minimize their
chances of coming into contact with the aircr&pecific strategic behaviors for each of

the agent types are illustrated below.

Given that the search pattern and search zonédaitcraft agent are set for the
historical validation, the primary strategic coms@tion remaining is the timing of the
search. WWII planners had to take into accounptissible reactive strategy of the
enemy. For example, if the aircraft concentrabedr tsearch exclusively during the
daylight hours, the U-Boats could surface exclugidering the nighttime hours to avoid
the searchers. Conversely, if searches were ctadlexclusively during nighttime
hours, the U-Boats could counter with a daytimet@uirfacing policy that would

guarantee no contact between the opposing fortlesrefore, the aircraft were forced to
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conduct searches throughout all parts of the dayJive, 1990]. For the purposes of
simulating history, the aircraft were distributedt{eduled) for takeoff randomly

throughout each 24 hour day.

U-Boat agent strategy concerned two principal fiectime spent on the surface
of the bay and time of day to surface. Travelinglee surface more than was necessary
to charge their batteries dramatically reducedithe needed to cross the bay. However,
traveling along the surface made the U-Boats valvlerto detection and attack from the
Allied aircraft. The U-Boat fleet experimented kvgurfacing only at night to reduce the
threat of attack versus surfacing when neededdardo move across the bay and into
the operational zone more quickly. This, howetiad an operational impact in that
waiting for a particular time of day (i.e. night&énto surface could delay the crossing,
thereby reducing the time the U-Boat could spertthénNorth Atlantic searching for

Allied transport ships.

The U-Boat fleet used both extremes of this sunfagolicy in crossing the Bay
of Biscay at various times during the conflict. déna policy of maximum submergence,
the U-Boats would surface only enough to rechange batteries before submerging
again to continue their crossing. At other tintbs, U-Boats attempted to “race” across
the bay to the North Atlantic, submerging only wiveming into contact with an Allied

aircratft.

The second U-Boat policy decision, daytime/nighttisarfacing, directly plays
against the aircraft search strategy. If the UtBocancentrated their surfacing during

one part of the day, then the aircraft could syootze their search to coincide with the
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surfacing. The historical record shows that thBda#t fleet policy used nighttime-only
and surface-as-required surfacing policies at mhffetimes of the conflict trying
simultaneously to minimize U-Boat vulnerability whimaximizing U-Boat

concentration in the North Atlantic [McCue, 1990].

The two scenarios chosen for validating the moédédlbpmance versus the
historical outcomes (section 4.3.2) were chosepait, because the U-Boat fleet policies
during these times were at extremes with respettetge two policy parameters. The
U-Boat agents follow the fleet policy known to beeiffect during the time simulated.

For example, Scenario 1 (October 1942 — March 19#3)lates a fleet policy of
maximum submergence and nighttime surfacing. Quaiperiod of “maximum
submergence,” U-Boats travel on the surface obtyonly long enough to charge their
batteries and only by night. Similarly, under thghttime-only surfacing policy, the U-
Boat agents only surface during the time betweeretid of nautical dusk and the
beginning of nautical dawn. Scenario 2 (April 1943eptember 1943) employs surface-
only movement during the day and mandated submeegduring the nighttime. Under
this policy configuration, the agents only submedgang the daytime when they come
into contact with an Allied aircraft agent. Onedbmerged, they travel the full extent
allowed by their batteries before resuming surtaaeel. The U-Boats in Scenario 2

only surface during the hours between nautical damehnautical dusk.

Hill, et al, (2003a), demonstrated the interplay betweenadiragent search and
U-Boat agent surfacing strategies within a gamertheonstruct by allowing the agents

to adapt their strategies based on their colle@xperiences. The experiment allowed
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for single-sided adaptation as well as simultanemlaptation (see section 4.2.5). In each

case, the results were indicative of those expaatddr game theory.

4.2.4.4 Other Agent-Based Issues

Simulations often rely on common random numbeis @&riance reduction
technique. Depending on the agent implementatios,may or may not be possible.
For instance, in a multi-threaded design, it idiiginlikely that agent threads act in
precisely the same order throughout the coursé# d@ications. Moreover, depending

on the operating system, the thread handling encdin uncontrolled stochastic process.

Attempts at controlling agent processing, howetags to reduce the autonomy
associated with the actions of each individual §gending to move the simulation
entities away from the definition of agent. Theref the analyst is left with little option
outside of increasing the number of replicationerier to reduce variance within the

simulation.

4.2.4.5 Model Verification

As with any software project of significant comgtgxan extensive number of
verification techniques were used to ensure thewgable model represented faithfully
the conceptual model. Verification methods wermdusom all three categories of the
verification taxonomy presented in the previouspteaof this document. The most

significant of these are presented below.
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4.2.4.5.1 Good Software Engineering Practices

Among the many good software engineering practisesl to verify the
translation of the model to an executable form, d@Sign and use of a development

environment were the most significant.

4.2.4.5.1.1 Object-Oriented (Modular) Design

The Bay of Biscay agent-based simulation was dgeelan JAVA, a pure OO
language. Because of the JAVA language requiresném variables are strongly typed
and the resulting code is necessarily completejgabloriented. Designing for an agent-
based simulation, however, required additional nterity above that called for by the

development language. Specifically, each agemhesggned as a separate object.

Individual agent behaviors were developed modulabgveloping the methods
within the construct of the agent shell provideel tlecessary framework for mixed
(bottom-up and top-down) testing mentioned in [8atg1996]. The agent object
provided a natural harness for verification tesbiithe various methods affecting the

agent’s behavior as they were developed.

The simulation was designed to take maximum adgantéthe OO property of
inheritance. Inheritance allows similar objectdéoderived from a base object. The
attributes and methods similar to all derived otgjere found in the base object, while
those methods and attributes that distinguish betvadéferent derived objects are
extended from the base object and found only irctue for the derived object. This has

the effect of reducing the verification effort nesary.
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For example, though the U-Boat and aircraft agesti® ultimately distinct, each
had common attributes (e.g. positional coordinajeal coordinates, etc.) and methods
(e.g. thread start, thread stop, reset after egalication, animation translations, etc.).
Therefore, a base agent was constructed havingptienon attributes and methods.
Within the base object, the common modules couldebiied in a single effort rather

than twice (as would have been the case withoubake class and inheritance).

4.2.4.5.1.2 Use of Development Environment

The Bay of Biscay agent-based simulation was cedtdn the Sun One ®,
Community Edition JAVA development environment. iSTprovided several advantages
over coding in a text editor. The primary advaet&gthe syntactical checking that
occurred as the code was entered. Individualreetes were interpreted for correct
syntax as they were typed, thereby providing imieedindicators when the syntax was
incorrect. Other tools included automated indeswadf nested statements and
highlighting of the alternate parenthesis or bra@ien the other in the pair. Together
these tools minimized the time necessary in delmggiie syntax and allowed more time

to be spent verifying the logic of the code.

Additionally, the JAVA language provides for thengeation of automated
hypertext documentation through special internahm@nt placement and code markers.
The Bay of Biscay agent-based simulation was cedddextensive use of these

comments, which facilitated the static verificati@amd code alteration when necessary).
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4.2.4.5.2 Static Verification

Static verification is done prior to code executsom was achieved through two
primary tools: through the use of the JAVA comp#aad with formal and informal

walkthroughs. Each of these is detailed individual

4.2.4.5.2.1 Static compilation

Compilers translate text-based computer code itohine executable code. The
JAVA compiler also provides additional functionglib static verification. First, the
compiler identifies variables that are used proinitialization, preventing one possible
source of numerical error. Second, the code im@ed for logical completeness, and
the compiler identifies logical branching thatrisomplete. Third, the compiler
identifies sections of code that are inaccessibtietuany circumstances. These functions

help minimize the most common logical errors iningdhe simulation.

4.2.4.5.2.2 Code/logical walkthrough

Each module was designed using logic flow diagrants pseudo-code prior to
coding in the development environment. Dependimghe complexity of the method
being developed, these diagrams and pseudo-cod@l@sodlere subjected to either
informal or formal walkthroughs. Informal walkthrghs were of the desktop variety,
while formal walkthroughs consisted of up to thiredividuals familiar with the project
in addition to the developer. Formal walkthrouglese held as often as weekly during
the most intensive four months of the simulationali@ment. Following a successful
walkthrough, the pseudo-code was translated ini6AJéode, compiled, and

dynamically tested.
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4.2.4.5.3 Dynamic Verification

Dynamic verification is performed while the modgekixecuting. The following
sections highlight the most important tools usedeiafy the Bay of Biscay agent-based

simulation model.

4.2.4.5.3.1 Animation

Animation during program execution provided veation for nearly all of the
agent behavior found in the simulation. Through\lsualization of the agents, logical
errors were detected for subsequent correctiomimnaber of situations including
incomplete reset between replications, inappropsatbmergence behavior, stationary
agents due to incomplete movement logic or unf@essents, and numerous other

faults that typically occurred at decision poirds the agents.

Even though the animation was an important firdicator of logical errors, an
animation tool provides only a coarse level of figation. Several classes of problems
are not identifiable through animation. This isetfor a number of reasons including: the
problem occurs when the agent is not visible; thiealvior of the agent seems reasonable,
but it is not the behavior that was intended urdspecific circumstance; or the
troublesome event occurs too infrequently to betedaluring small verification runs.

Other techniques were used to get finer verificat@solution.

4.2.4.5.3.2 Trace output, model instrumentation, and delgging.
The most extensive dynamic verification tool usexswnodel instrumentation and
output tracing. As each new module was incorpdrat® the simulation, lines of code

were added to output both the environmental anishaal agent states at particular
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events (e.g. reaching port or base, sighting echkittg a U-Boat, or change in
submergence status). The output state valuesanesponding agent behaviors could

then be scrutinized for consistency with the cotiapmodel.

The development environment provided a debug meteh provided a similar
framework for verification. During simulation exg®on, attribute watches could be set
along with break points enabling a more flexibletmoel of monitoring agent and
environmental states. Unlike the model instrumi@mathese could be changed during

execution and linked to a specific agent of interes

4.2.5 Agent Adaptation

The Bay of Biscay scenario contains several intexg@sonflicting strategies for
each side in the operation. One of the more inapbitrategies involved day versus
night considerations. The Allied aircraft searffiort desired maximum contact and Kkills
of U-Boats. The U-Boat fleet’s surfacing policyugiit to minimize the vulnerability of

the fleet.

Consider for example that aircraft attacks werenditically more successful
during the daytime hours. Allied forces thus wopitdfer predominantly daytime
attacks. However, concentrating all aircraft ssrtiluring the daytime hours would allow
the U-Boats to surface exclusively during the rtigh¢ hours effectively negating the
entire Allied search effort. Conversely, concetimigasearch activity during nighttime
hours gives U-Boats a counter of surfacing durirggdaytime hours, again negating the
Allied strategy. Therefore, the Allied search rneed both daytime and nighttime effort

to prevent the U-Boat surfacing policy from adagtio the Allied search strategy.
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The agents in the Bay of Biscay agent-based sirounlatere provided an
adaptive capability. The adaptation was desigmedral the day versus night strategy.
Aircraft agents used their collective experienceagportion search effort between
daytime and nighttime searches in an attempt tease the level of contact (and kills)
with the U-Boat fleet. U-Boat agents used thelleocbive experiences to adjust their
surfacing policy to reduce the level of contactwAtllied aircraft, thereby countering the

perceived Allied strategy.

The Bay of Biscay agent-based simulation coulddie¢csallow: 1) no agent
adaptation; 2) Aircraft-only adaptation; 3) U-Boally adaptation; or 4) two-sided
adaptation (co-evolution). Historical validatiofficets were made with no agent
adaptation. The effect of adaptive strategiesf{garations 2, 3, and 4, above) was
explored in the context of a game theory framewark] the results are reported in

(Price, 2003; Hillet al, 2003a).

4.2.5.1 Aircraft Adaptation

Aircraft adaptive strategy involved the apportiommef search effort between
daytime and nighttime search. The aircraft agastdomplementary probabilities of
scheduling daytime &) or nighttime (Rign: = 1 — Ray) missions. Each aircraft
schedules its “next” mission according to a randivaw against &, Given a uniform
random draw, U, such thatPyay the aircraft will schedule itself for a searchidg
the next daytime period; otherwise, it will schemditself for a nighttime search during

the next period.
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In using the Ry versus Rgn construct, the number of sorties scheduled for
daytime searches is a random variable. The exp@&ctmber of the sorties scheduled for

daytime search is given by
E[Sday] = I:)day |:Sotal (47)

where Gayis the fraction of scheduled sorties performingtilee searches and
Sotal IS the total number of sorties scheduled.

Similarly, the expected number of nighttime seawfties scheduled is given by:
E[Snight] = (1_ Pday) |:Sotal = night |:Sotal (48)

where Signt is the fraction of scheduled sorties performinghtiime searches and
Sotal IS the total number of sorties scheduled.

For daytime searches, the aircraft agent schedbsléakeoff time uniformly over
the period from three hours prior to sunrise teesevwurs prior to sunset. The time
window prior to sunrise provides sufficient time fogress to the search zone prior to the
start of its search. Similarly, the seven houitliwith respect to sunset provides enough
time to search within the assigned search zone farinight fall. For nighttime
scheduling, an aircraft agent selects a takeot timiformly over the time period from
three hours prior to sunset until seven hours poidhe following sunrise. Again, the
three hours prior to sunset allow sufficient tiroe ihgress to the search zone to allow
searching to begin as soon as the sun sets. Vée Beurs limiting takeoffs prior to
sunrise ensures sufficient mission duration to pi@effective search within the search
zone for the missions scheduled for the later gorif the nighttime. Figure 4.12 is a
generic representation of the scheduling procedsdth day and night search missions.
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Figure 4.12 Generic Aircraft Agent Scheduling Process fabay versus Night

Missions

The aircraft fleet collects information on U-Boajlgings based on daytime
versus nighttime contact. The collected informaadlows aircraft agents to modify their
Paay and Rignt to improve their perceived chances of making oattntdath the evasive

U-Boat fleet.

The adaptation algorithm adjusts the valugy Rt equal time increments and is a
two step process. Step 1 computes the fractiahBbat sightings during th&'itime

period occurring during the daytime:

S

fi =% (49)

day; night;

where S, is the number of daytime sightings during tReirne period, and

Signy IS the number of nighttime sightings during theiine period.
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Step 2 computesqk, for the (i + 1¥" time period as a weighted averageRyf, and f,.

(I) [ Pdayi + fi
day; 41 = | +1 (410)
Pnighti+1 =1- Pdayi+1 (411)

The algorithm contains two special cases in thethatS,,, + S, =0. If there were

night;

no sightings during thé'itime period andP,,,, =10 orP, 05,

day;

= 00, thenP,

iy

otherwisef, = 0.5in an attempt to move, toward a value likely to provide some

ayj+1

contact with the U-Boats . In either casg,, is an initial setting defined by the model

user.

The advantage of the weighted average approadatalsstrategy adaptation is
two-fold. First, in the initial stages of the cbetf the aircraft strategy cannot move more
than half the distance to the observed fractiosigtitings, thereby preventing
overcompensation for sightings that, through randeourrence, do not accurately
reflect the U-Boat surfacing strategy. Secondhesircraft strategy matures, the current
strategy becomes more important, thereby stahjitie adaptation process, leaving just

fine tuning of the probability values.

4.2.5.2 U-Boat Adaptation

U-Boat adaptive strategy involved apportioning fleets surfacing between
daytime and nighttime when a U-Boat is within theey®f Biscay and vulnerable to

attack from Allied aircraft agents. The U-Boatstgy was expressed through a
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complementary pair of probabilitiegs?and Righ. TO exercise the strategy, a U-Boat
needing to surface makes a uniform random dravagdinst Ry If it was daytime and

U < Psay then the U-Boat surfaces; otherwise, it staysmrged and surfaces as soon as
sunset had occurred. If it was nighttime and Uiz, fhen the U-Boat surfaces;
otherwise, it stays submerged and surfaces asasosunrise had occurred. The check is
made each time the U-Boat attempts to surface téreeling the extent of its battery

reserves underwater.

The U-Boat adaptation algorithm differs from thecgft. The U-Boat strategy
was built around decreasing the number of contatiseen the opposing sides. The
U-Boats also track aircraft sightings prior to digery of the U-Boat by the aircratft.
Finally, the U-Boats consider the fraction of kitde during the daytime and nighttime

in addition to the fraction of daytime versus ntghe U-Boat sightings by aircraft.

The U-Boat strategy adaptation algorithm adjugtgiR equal time increments.
The U-Boat algorithm is a three step process. Stapmputes the fractions of the three

contact types, indej during thei™ time period occurring during the daytime:

<j>

<j> SdaYi
S<J> + S<J>

day night;

where S;)> is the number of daytime j-type contacts durirg fthtime period,

day j

Sram 1 the number of nighttime j-type contacts duting i time period, and

j =1, 2, 3represents U-Boats sighted by airct&Boats killed, and aircraft
sighted by U-Boats, respectively.
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Step 2 computes a weighted sunf 6f :

3
fi=> w, O (4.13)
j=1

3
where w; is the weight given the" contact type an(Z w; =1
J:

Step 3 computeBy,y for the(i + 1)" time period as a weighted averageRyf, andf; .

_ (i)[(l_ Pdayi)+ fi

day; = .
it i+1

(4.14)

1-P

dayj+1

(4.15)

Pnighti+1 =

Comparing the two adaptation algorithms, naturahig, aircraft adaptation algorithm
tends to move the aircraft agents toward more comiéh the opposition, while the U-

Boat algorithm tends to favor fewer contacts with Allied aircraft agents.

4.2.6 Simulation Output Format

The Bay of Biscay agent-based simulation trackgiplalmeasures of
effectiveness throughout the duration of the rufise data is organized by month and by
simulation replication (iteration), so for each sglation run, each MOE (i.e. aircraft
flying hours, U-Boats sighted, and U-Boats kille&zlputput as a matrix, such that for
each MOE;; is the value of the MOE for th8 replication during th¢" month. Two
scenarios were run (see section 4.3.2). Each soesmulated 6 monthg € 1, 2, ..., 6)

and was replicated 20 timas«1, 2, ..., 20).
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From this matrix, multiple significant measures t&nderived for useful analysis.
The most obvious of these are presented in theineleraof this section and are
presented assuming 20 replications of a 6-monthlaimon experiment.

4.2.6.1 lteration Total

The total value of the MOE for th® feplication is:

X; =ZG:XM (4.16)

=1

4.2.6.2 Mean Total Value

The mean total MOE value over all replications is:

_ 1 20
X=—)> X (4.17)
207

4.2.6.3 Iteration Mean Monthly Value

The mean monthly value of the MOE for tHeréplication is:

$x, (4.18)

=1

X =

ol

4.2.6.4 Overall Mean Monthly Value

The overall mean of monthly value of the MOE is:

iziio?i (4.19)
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4.3 Analysis Objectives

The first step in the modeling process was to dater the analysis objectives for
the simulation development. The primary objectings to demonstrate that agent-based
combat simulation could be sufficiently advancednission-level combat modeling. In
making this determination, the model would be stiejg to validation techniques
comparing the simulation output to a known hist@ra&cenario. Analysis techniques

were developed to compare the historical and madeilts.

The determination of whether or not a model isdatkd is necessarily a
subjective function of intended model use. Theumegl accuracy for model output is
also subjectively determined by the level of riskarent in accepting output from a
model that may be incorrect. The validation cidersed to demonstrate sufficiency for
the Bay of Biscay agent-based simulation providstaastical argument against
invalidating the model with respect to the histakiscenarios. That is, can an agent-
based model of the offensive search operationseiBay of Biscay come sufficiently
close to the historical outcomes to prevent stesibtejection at a reasonable confidence

level?

In addition to model validation, the Bay of Biscayent-based simulation was to
be used in two other demonstrations of capabilitiesther areas of research. First, the
simulation was used to determine the applicabditggent-based combat simulations to
provide insight into offensive search techniquesndnstrating the ability to differentiate

between various search strategies. Second, thelmag used in an analysis of
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agent-based results with respect to game theomgiples, specifically demonstrating the

effects of strategy adaptation on the part of lagint types on the scenario MOESs.

The complement of model specifications were derbasked on the needs of each

of the three analysis objectives specified above.

4.3.1 MOEs

Output from the Bay of Biscay agent-based simutesice compared to the two
primary measures of effectiveness (MOESs) from #a-world data, number of U-Boats

sighted and number of U-Boats killed (sunk).

While the validation using simulation MOEs givesifidence as to the validity of
the model, there are other agent-based charaatsttisat should be tested, specifically
any emergent behavior from the model. As an exapgsecondary measure, the
distribution of U-Boat arrivals into the Bay of Ba&y, is addressed as a validation
measure of emergent agent behavior. Operatioadysis noted that the U-Boats entered
the Bay of Biscay according to a Poisson distrimu{McCue, 1990; Waddington, 1973].
The simulation model made no effort to force th&ahkt agents into specific behavior to
conform to a Poisson arrival distribution, or ietféo any particular distribution.

Therefore, the arrival times in the bay are an gewrphenomenon.

4.3.2 Validation Scenarios

Two scenarios were chosen for validating the sitiaria The first was the six
month period from October 1942 — March 1943 (hesxtkef Scenario 1), and the second

was a six month period from April 1943 — Septeniti#t3 (Scenario 2). These scenarios
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were chosen because the technologies used by it &ircraft and German U-Boats
remained relatively constant over the time perimd,were different between scenarios.
Moreover, the German U-Boat command’s submergeabeypsed by the U-Boat
captains within each scenario was stable meanmeht behaved consistently

throughout each period.

Scenario 1 (October 1942 — March 1943) simulatgsBoat fleet policy of
maximum submergence and nighttime surfacing [Mc@Q@80]. Under this policy,
U-Boat agents will travel on the surface of the baly long enough to charge their
batteries and only by night. The U-Boat agentSaanario 1 will only surface during the

time between the end of nautical dusk and the Iaggnof nautical dawn.

Scenario 2 (April 1943 — September 1943) employsBoat fleet policy of
surface-only movement during the day and mandatkeohergence during the nighttime
[McCue, 1990]. Under this policy configurationetl-Boat agents will only submerge
during the daytime when they come into contact wamhAllied aircraft agent. Once
submerged, they will travel the full extent allowlegltheir batteries before resuming
surface travel. The U-Boat agents in Scenariollonly surface during the hours

between nautical dawn and nautical dusk.

The U-Boat fleet initially consists of 70 agentstdbuted randomly and
uniformly throughout the Bay of Biscay, half of tieet moves toward the North
Atlantic, and half moves toward their home portefle are five home ports located on
the coast of France, and the agents are evenlyngssamong them. This initial U-Boat

agent configuration was not representative of uspatations.
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A simulation warm-up period of 12 months is usegdasition the fleet, through
normal movement through the bay and time spenp@raiional zones and ports, in a
more natural configuration as might have been¢héworld case. During the warm-up
period, the aircraft do not hunt the U-Boats. UaBfleet reinforcements begin arriving
in the North Atlantic from Germany according toith@storical numbers [McCue, 1990]
in month 12 of the warm up period and continue ugtmut the remainder of the
simulation (Table 4.1). The U-Boat reinforcemeants divided evenly between four of

the five French ports.

Table 4.1 U-Boat Reinforcements for Validation Saérs [McCue, 1990]

Scenario 1 Scenario 2
Enter Simulation Number of U-Boats | Enter Simulation Number of U-Boats

Sept 1942 32 Mar 1943 25
Oct 1942 32 Apr 1943 13
Nov 1942 27 May 1943 22
Dec 1942 11 Jun 1943 16
Jan 1943 14 Jul 1943

Feb 1943 14 Aug 1943

The literature does not report the number of ait@anducting offensive search
operation during each scenario. However, the numbiying hours during each
scenario is reported. Therefore, the number ofaliragents within each scenario was
set to agree with the historic sortie hour levetsorded during the time periods modeled.
The modeled aircraft fleet consists of 19 agenSdanario 1 and 31 agents in Scenario
2, operating from a single airbase in Great Britaline number of aircraft agents remains

constant throughout each scenario simulated.
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Aircraft offensive search is assigned to a fixeebaof the bay 200 x 350 NM
(E-W x N-S) (see Figure 4.4). The search areabsligided into 50 x 50 NfInon-
overlapping grids (see Figure 4.5). Aircraft seagabh grid according to a modified
barrier search pattern constructed from the tadimsussed in [Waddington, 1973] (see
Figure 4.6). In addition, the aircraft searchibBoats during ingress to and egress from

their assigned search area.

Aircraft attacks varied in effectiveness in eachhef scenarios. The aircraft
attack effectiveness Pduring Scenario 1 was computed as the ratiolsfta sightings
as found in [McCue, 1990], resulting in a#0.02. No data was available to allow
distinction between daytime and nighttime effeaties for Scenario 1. Waddington
(1973) presented aircraft attack effectivenessHertime period covered by Scenario 2
and further differentiated between daytime and tigie effectiveness. The model

incorporated the Waddington material as nighttimme B.11 and daytimex= 0.4.

For validation purposes, each scenario was reptic20 times, and statistics were
kept for the 6-month total and on a per-month ba$te number of replications was
selected based on the stability output variang@r B production runs, both scenarios
were run over varying numbers of replications agllting variances calculated. Theses
results are plotted in Figures 4.13 and 4.14 f@n8do 1 and Scenario 2, respectively.
As shown in the figures, the output variance wa$yfatable after ten replications
yielding twenty replications as a final replicationmber for the research production

runs.
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Variance Analysis by Replications
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Figure 4.13 Variance Reduction in Pre-Production Model, Scenar 1
MOE Variance by Replications
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Figure 4.14 Variance Reduction in Pre-Production Model, Scenar 2
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4.3.3 Validation Criteria

There are particular considerations when buildimgoalel based on an historical
operation. The extent to which the model is advedpresentation of the real-world
system is directly related to the proximity of gimulation output to the real-world MOE
values. However, the simulation is an approximmatbthe real-world system, and is

unlikely to match the real-world system exactlyowclose, then, is close enough?

The validation literature lacks a definitive ansuethe above question. “Close
enough” is both simulation and circumstance depetnd€he answer depends on a
number of factors including risk associated wittngsn incorrect model and the fidelity
of (or confidence in) the inputs that drive the migoerformance. In this research’s case
study, success is defined as follows: given a lefeffort for offensive search
reasonably close to the level of effort expendedhduthe simulated periods of time, the
simulation produces results similar to those predua the real-world scenario.
Limitations in the fidelity of the input data, spfezally the Allied level of effort (sortie
hours) necessitate this broad definition. Sectidnbuilds a case for accepting the Bay
of Biscay agent-based simulation as a valid reptasen of the real-world operations

accordingly.

Validating the simulation against the historicaloel raises another serious issue
for combat simulations. Acknowledging that truentiat is a stochastic process, a single
historic combat result represents a potentiallyggaous comparison. If the event is

compared to a simulation mean, then the resulta fie real-world event is implicitly
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taken as the mean of all possible real-world ouggnith only one sample for

comparison, there is no way to know the fitnesthisfassumption.

Though such a comparison is risky, and statisticalspect, the single real-world
conflict is the best guess for the mean when thaseonly been the one conflict. The
validation in this effort uses the real-world datsuch a manner. That is, the real-world

data is assumed to be the true mean of all conmalEtrihe same conditions.

4.4 Model Output and Validation

Table 4.2 and Table 4.3 show the real-world MORi@alfor Scenario 1 and
Scenario 2, respectively. MOE values for each momthe operation were taken from
[McCue, 1990]. The values in the column under “Suepresent the totals for each
MOE over the entire time period and were computadgu(4.16). Likewise, monthly

means for each MOE were computed using (4.18) ande found under the “Mean”

heading.
Table 4.2 Historical MOE values for Scenario 1 [MieC1990]
MOE Oct42| Nov42| Dec42| Jan 43 Feb 43 Mar 3 Sum Mean
Sortie Hours 4,100 4,600 3,400 3,130 4,400 4,600 24,230] 4,038.3
Sightings 18 19 14 10 3P 42 135 22.5
Kills 1 1 0 0 0 1 3 0.5
Table 4.3 Historical MOE values for Scenario 2 [MeC1990]
MOE Apr 43 May 43| Jun 43 Jul 43 Aug 48 Sep 43 Sum Megh
Sortie Hours 4,20( 5,350 5,900 8,7Pp0 7,000 8,p00 39150 6,25.0
Sightings 52 94 6 8l 7 v 319 53.2
Kills 1 7 4 13 5 2 32 5.3
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4.4.1 Gauging the Allied Level of Effort

The level of effort for each simulated scenario watermined by adjusting the
number of aircraft agents acting within the simolatuntil the total number of sortie
hours simulated was in a reasonably close neigloloorto the actual sortie hours flown.
Inspection of the monthly sortie hour values in[€ab2 and Table 4.3 shows that the
number of sortie hours stated for each month isvam multiple of 10, and if the records
were accurate, the numbers would probably showckessistency. In all likelihood these

numbers are rounded or approximated.

It is impossible, therefore, to know the true vadfisortie hours flown (though
the reported values are still termed “actual” @alrworld”), and this supports why a
more exacting standard was not used. Table 4 wWsstite simulated sortie hours for
Scenario 1, including the corresponding total lefedffort and mean monthly sortie

hours. Table 4.5 shows the same data for SceRario
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Table 4.4 Simulated Aircraft Sortie Hours for Saemd

Oct 42| Nov 42| Dec42 Jan 48 Feb 43 Mar 43 Sum Mdan
Iteration 1 3,206 3,487 3,651 3,208 2,702 3,910 20,p24 3,71
Iteration 2 4,059 3,742 3,932 3,805 3,001 3,399 21,938 3,656
Iteration 3 4,404 4,146 4,080 3,945 3,692 4,493 24,Y60 4,127
Iteration 4 4,333 4,137 4,222 4,189 3,532 4,010 24,423 4,071
Iteration 5 3,749 4,043 3,911 3,402 3,697 3,612 22,404 3,F34
Iteration 6 3,782 3,816 3,865 3,952 3,208 3,809 22,432 3,39
Iteration 7 4,162 3,969 4,238 4,175 4,006 4,087 24,587 4,098
Iteration 8 4,428 4,182 4,078 4,217 3,812 4,264 24,981 4,164
Iteration 9 4,146 4,202 4,360 4,200 4,001 4,136 25,045 4,174
Iteration 10 4,391 4,180 4,135 4,25Y 3,964 4,084 24,p61 4,160
Iteration 11 3,553 3,388 3,543 2,399 3,198 3,851 19,p32 3,B22
Iteration 12 3,745 3,747 3,848 3,941 3,182 4,266 22,729 3,/88
Iteration 13 3,871 3,041 3,276 3,519 2,697 4,119 20,4193 3,416
Iteration 14 3,692 4,194 3,142 3,651 3,538 3,7p6 21,p43 3,57
Iteration 15 3,969 3,673 3,819 3,446 3,568 3,984 22,408 3,35
Iteration 16 4,046 3,955 4,097 3,818 3,287 4,005 23,p03 3,B67
Iteration 17 4,183 4,201 4,317 4,072 3,995 4,253 25,p21 4,170
Iteration 18 4,271 4,137 4,458 4,248 3,866 4,1P0 25,L00 4,183
Iteration 19 4,289 4,120 4,347 4,29p 4,084 3,960 25,p86 4,181
Iteration 20 3,818 3,168 4,192 4,106 3,413 3,410 22,107 3,p85

Table 4.5 Simulated Aircraft Sortie Hours for Saema

Apr43 | May43 | Jun 43 Jul 483 Aug 48 Sep 4B Sum Meaghn
Iteration 1 4,899 5,880 5,779 5,194 5,110 6,205 33]0675,511
Iteration 2 6,494 6,086 5,932 6,141 4,829 53211 34]6935,782
Iteration 3 6,713 6,209 6,350 5,199 6,037 6,553 37]0616,177
Iteration 4 6,979 6,994 6,743 6,354 5,725 6,605 39]4006,567
Iteration 5 6,708 7,071 6,604 6,808 6,994 6,p45  40]7306,788
Iteration 6 6,543 6,965 6,502 6,724 6,915 6,p40  40]1896,698
Iteration 7 6,803 6,761 6,830 6,990 7,133 6,J53  41}2706,878
Iteration 8 6,849 6,926 6,462 6,705 7,260 6,879  41]0816,847
Iteration 9 6,824 6,71y 6,854 6,895 6,566 6,17  40}5736,762
Iteration 10 7,080 7,026 6,613 6,785 6,941 6,p41  40,9966,833
Iteration 11 6,729 7,068 6,597 6,545 6,890 6,y87  4016106,768
Iteration 12 6,907 7,132 6,894 7,102 7,018 6,y59  41}8126,969
Iteration 13 6,780 5,87y 5,086 5,745 5,871 6,126 35}4655,911
Iteration 14 5,827 5,744 5,684 6,347 6,338 6,p26 36}4666,078
Iteration 15 6,197 6,720 6,296 6,4}2 6,674 6,p55 39]0146,502
Iteration 16 6,321 6,82p 6,614 6,267 6,965 6,p93 39]7456,624
Iteration 17 6,582 7,011 6,798 6,660 6,428 6,813  40,6526,775
Iteration 18 6,486 6,918 6,618 7,0f3 6,963 6,867  40,9206,820
Iteration 19 6,681 7,008 6,801 7,107 6,950 6,28  41]1756,863
Iteration 20 6,952 7,048 6,697 6,913 7,053 6,p21  41]2796,880
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In the following discussion, joint confidence intal bounds were computed

using the t-distribution, given by

X+ (4.20)

S
ﬁtl—ﬁ,n—l
where x is the sample mean
sis the sample standard deviation
nis the sample size
k is the number of joint confidence intervals desirend

1--4 is the joint confidence level desired with< 1) degrees of freedom.

Table 4.6 shows the total real-world sortie holow/h against the mean
simulated totals (4.17) for Scenario 1 and Scerfarid he confidence intervals were
computed using (4.20) with 19 degrees of freedothagjoint confidence level of 0.& €

2). Figure 4.15 depicts this data graphically.

Table 4.6 Total Sortie Hours, Simulated versus Aktu

Simulation Values
Total Sortie Lower Conf. Sample Mean Upper Conf. Actual
Hours Bound Bound
Scenario 1 22,362 23,189 24,016 24,230
Scenario 2 38,122 39,310 40,498 39,150
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Aircraft Sortie Hours - Combined Scenarios
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Figure 4.15 Total Sortie Hours Flown, Combined Scenarios

Given the aforementioned suspicions surroundingtioeiracy of the historical
record with respect to the sortie hours flown by llied aircraft, the sortie hours flown
in each scenario were deemed sufficiently clogbdaactual data to represent a
reasonably close level of effort for further MOENgmarison. Indeed, the actual number
of sortie hours for Scenario 1 is just outsidedbefidence interval by 214 hours,
representing an average of 20 sorties per six nsasfteimulation, or just over 1 extra
sortie per aircraft per six months. The actual benof sortie hours for Scenario 2 is
easily captured by the confidence interval. Thins,model properly captures the Allied

level of effort as measured by aircraft sortie lsour
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4.4.2 Validation of Scenario 1 Results

Table 4.7 shows the simulation results for the nemad U-Boat agents sighted by
Allied aircraft agents during Scenario 1. Theatems’ MOE totals accompany the

monthly values, as do the monthly means.

Table 4.7 Simulated U-Boat Sightings for Scenario 1

Oct 42| Nov42 | Dec42 Jan 43 Feb 43 Mar 3  Sumn Meah
Iteration 1 9 17 2] 17 1L 3B 108 18.000
Iteration 2 19 14 25 24 24 23 129 21.500
Iteration 3 16 23 14 2P 2b 28 129 21.500
Iteration 4 20 17 21 33 2b 33 150 25.000
Iteration 5 15 16 14 25 2B 6 128 21.333
Iteration 6 18 21 2( 29 2B J2 143 23.833
Iteration 7 11 20 24 30 34 8 147 24.500
Iteration 8 20 17 17 25 2B 23 130 21.667
Iteration 9 27 25 34 40 2B J0 184 30.667
Iteration 10 17 17 26 30 33 45 168 28.000
Iteration 11 9 9 23 13 21 q7 102 17.000
Iteration 12 15 17 27 34 27 39 159 26.500
Iteration 13 12 14 14 21 17 45 107 17.833
Iteration 14 12 15 1% 26 21 47 116 19.333
Iteration 15 13 17 14 24 2b 36 131 21.833
Iteration 16 22 14 14 16 27 45 120 20.000
Iteration 17 21 15 23 1y 21 43 120 20.000
Iteration 18 22 21 22 21 27 36 149 24.833
Iteration 19 21 28 32 30 24 41 156 26.000
Iteration 20 13 15 22 2y 27 46 130 21.667

Table 4.8 shows the simulation results for the nemald U-Boat agents destroyed
by the Allied aircraft agents during Scenario ikelthe previous table, the total number

of kills and mean monthly kills accompany the raamtily values.
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Table 4.8 Simulated U-Boat Kills for Scenario 1

Oct42| Nov42 | Dec42| Jan43 Feb@d3 Mar 4B Sum Med
Iteration 1 0 0 0 1 ( 2 0.333
Iteration 2 0 0 1 1 y. 5 0.833
Iteration 3 0 0 1 1 ( 3 0.500
Iteration 4 0 0 1 q 1 1 3 0.500
Iteration 5 0 0 1 | 4 ] 4 0.667
Iteration 6 0 0 0 1 ] [) 2 0.333
Iteration 7 0 0 1 2 1 5 0.833
Iteration 8 0 1 0 q 1 3 0.500
Iteration 9 1 0 2 1 1 0 5 0.833
Iteration 10 1 1 2 1 1 6 1.000
Iteration 11 1 1 (0 1 1 4 0.667
Iteration 12 1 0 1 d 1 3 0.500
Iteration 13 1 0 1 d ( 2 0.333
Iteration 14 0 0 (0 d 1 | 2 0.333
Iteration 15 0 0 1 1 1 | 4 0.667
Iteration 16 2 1 (0 d 1 4 0.667
Iteration 17 0 0 1 1 1 3 0.500
Iteration 18 0 0 2 1 ( p 5 0.833
Iteration 19 0 1 1 Y. ( | 5 0.833
Iteration 20 0 1 1 d 1 | 4 0.667

Table 4.9 combines the MOE data from both the satimrh and the historical

record to facilitate comparison for validation.

Table 4.9 Combined MOEs for Scenario 1, Simula@mdws Actual

Simulation Values
MOE Lower Conf. Sample Upper Conf. Actual
Bound Mean Bound Data
Sightings 125.3 135.3 145.3 135.0
Kills 3.1 3.7 4.3 3.0

Figure 4.16 shows a graphical representation efd¢ata. The confidence

intervals have a joint confidence level of 0.8 (R)=
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Combined MOEs - Simulated vs. Historical Total:
(Scenario 1)
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Figure 4.16 Comparisons of Simulated versus Historical MOE Vaks, Scenario 1

The Bay of Biscay agent-based simulation cleartydpces an historically
accurate number of U-Boat sightings. The numbes-8oats killed, however, falls
slightly outside the confidence interval producgdte simulation results. The
magnitude of the difference, however, is quite $@nad is less than a single kill over the
6-month scenario (indeed, the historical recomssricted to discrete integer values).
Therefore, in spite of the statistical differenteeems reasonable to say that the

simulation produces accurate results for Scenario 1

4.4.3 Validation of Scenario 2 Results

Table 4.10 shows the simulated sightings, and Ta&kl shows the simulated

kills for Scenario 2.
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Table 4.10 Simulated U-Boat Sightings for Scenario

Apr 43 May 43 | Jun 43 Jul48 Aug 48 Sep 483 Spm  Mear
Iteration 1 38 50 44 46 45 64| 287 47.833
Iteration 2 48 46 44 5y 62 70| 332 55.333
Iteration 3 46 43 44 48 57 69| 304 50.667
Iteration 4 46 48 5] 56 69 48| 318 53.000
Iteration 5 40 49 49 69 70 69| 345 57.500
Iteration 6 60 46 671 70 58 57| 358 59.667
Iteration 7 50 46 66 5y 59 63| 341 56.833
Iteration 8 42 52 44 54 74 79| 347 57.833
Iteration 9 43 60 47 62 70 75| 357 59.500
Iteration 10 46 53 54 7P 75 73| 373 62.167
Iteration 11 40 44 49 68 56 55| 312 52.000
Iteration 12 36 59 51 5174 63 58| 334 55.667
Iteration 13 44 g 47 5p 55 55| 282 47.000
Iteration 14 35 4(Q 49 45 71 48| 288 48.000
Iteration 15 44 44 57 78 58 58| 334 55.667
Iteration 16 42 58 54 6l 60 68| 343 57.167
Iteration 17 42 47 62 6P 71 66| 357 59.500
Iteration 18 43 59 56 79 74 65| 376 62.667
Iteration 19 48 3 47 64 72 60| 344 57.333
Iteration 20 41 45 57 6l 59 75| 338 56.333

Table 4.11 Simulated U-Boat Kills for Scenario 2

Apr 43 May 43 | Jun 43 Jul4B8 Aug 48 Sep 483 Sm  Mear
Iteration 1 0 6 7 3 6 6 28 4,667
Iteration 2 1 3 4 8 5 5 26 4,333
Iteration 3 6 5 5 g 4 3 28 4,667
Iteration 4 2 9 4 3 9 3 30 5.000
Iteration 5 2 2 5 4 6 9 28 4,667
Iteration 6 4 5 8 8 8 5 38 6.333
Iteration 7 6 2 12 9 4 6 39 6.500
Iteration 8 3 2 8 8 9 13 43 7.167
Iteration 9 4 5 1 g 6 7 28 4,667
Iteration 10 5 4 4 q 13 5 37 6.167
Iteration 11 7 7] 3 9 6 2 34 5.667
Iteration 12 6 3 2 12 9 5 37 6.167
Iteration 13 5 4 3 5 4 4 25 4,167
Iteration 14 2 4 7 y. 8 4 27 4,500
Iteration 15 5 7] 3 1 6 3 31 5.167
Iteration 16 6 6 g K 5 11 37 6.167
Iteration 17 3 3 8 q 5 4 29 4,833
Iteration 18 2 6 5 q 5 6 30 5.000
Iteration 19 5 3 g 4 9 7 34 5.667
Iteration 20 3 7| 4 (¢ 5 7 32 5.333
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Table 4.12 shows the statistical results in conspario the historical outcome for
Scenario 2. The confidence intervals have a jonfidence level of 0.8 (k =2). The

data are plotted in Figure 4.17.

Table 4.12 Combined MOESs for Scenario 2, Simulamdus Actual

Simulation Values
MOE Lower Conf. Sample Upper Conf. Actual
Bound Mean Bound Data
Sightings 320.7 333.5 346.3 319.0
Kills 29.7 32.1 34.4 32.0

Combined MOEs - Simulated vs. Historical Total:
(Scenario 2)
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Figure 4.17 Comparisons of Simulated versus Historical MOE Vaks, Scenario 2

The simulation results for Scenario 2 compare vezl} to the historical

outcomes. The confidence interval for simulatéid kiicely encompasses the historical

128



number of kills for the same period. The confidemgerval for sightings does not cover
the historical value, but the magnitude of differemetween the historical value and
simulated mean is relatively small (within 5%).déed, the difference is 14.5 sightings
over the 6-month scenario, an average of 2.4 sightper month. Again, in spite of the
statistical difference, it seems reasonable talsatythe simulation produces accurate

results for Scenario 2.

4.4.4 Validation of Emergent Behavior

While the validation of the simulation MOEs givemiidence as to the validity
of the model, there are other characteristicsghatild be tested with agent-based
models, specifically the emergent behavior of thenés themselves. For example, the
operational analysts noted that the U-Boats entitxe@ay of Biscay according to a
Poisson distribution [Waddington, 1973; McCue, 199Dhe simulation model made no
effort to force the U-Boat agents into specific égbr to conform to a Poisson arrival
distribution. Therefore, the arrival times in theey are an emergent phenomenon and can

be statistically tested.

To test the arrival distribution, it is sufficietat recall that the inter-arrival times
for a Poisson distribution are distributed expoiantith parameterh. Gusella (1991)
notes a common method for testing Poisson distabsitof arrival processes in which the
ratio of the mean to standard deviation of therieteent times, called the index of
dispersion, is calculated. The index of disperdéiecomes the indicator, and for a

Poisson process, the index of dispersion is equal t
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U-Boat arrival times were collected for each itemratduring simulation

execution, and the inter-arrival times were calk®da Table 4.13 shows the mean,

variance, and their ratio for U-Boat inter-arritimhes under each scenario.

Table 4.13 U-Boat Inter-arrival Statistics and xaé Dispersion

Scenario 1 Scenario 2
Mean St Dev Ratio Mean St Dev Ratio
Iteration 1 321.01 305.77 1.05 377.30 433,01 0.87
Iteration 2 352.23 346.22 1.02 394.56 383,23 1.03
Iteration 3 366.49 385.78 0.95 397.56 381,23 1.04
Iteration 4 372.62 372.94 1.00 369.04 444,17 0.83
Iteration 5 378.78 415.08 0.91 371.66 387,56 0.96
Iteration 6 402.23 455.46 0.88 372.11 419,52 0.89
Iteration 7 382.54 398.39 0.96 408.90 414,89 0.99
Iteration 8 371.38 407.5b 0.91 398.49 492,90 0.81
Iteration 9 385.86 406.84 0.95 368.78 427,33 0.86
Iteration 10 402.35 396.20 1.02 384.38 436.37 0.88
Iteration 11 502.43 493.85 1.02 361.85 340.46 1.06
Iteration 12 412.88 389.28 1.06 419.88 389.28 1.08
Iteration 13 463.15 507.93 0.91 321.01 305.77 1.05
Iteration 14 390.07 401.04 0.97 352.23 346.22 1.02
Iteration 15 393.17 417.25 0.94 447.30 43301 1.03
Iteration 16 361.35 340.46 1.06 406.06 380.03 1.07
Iteration 17 371.79 388.22 0.96 387.56 371.23 1.04
Iteration 18 419.71 401.51 1.05 379.24 423.16 0.90
Iteration 19 375.99 379.82 0.99 356.36 390.76 0.91
Iteration 20 366.87 390.46 0.94 362.13 413.82 (.88

Mean indexes of dispersion were computed for Saedaand Scenario 2. Joint

confidence intervals were constructed with a joonfidence level of 0.8 (k =2). The

results are displayed in Table 4.14.

Table 4.14 Index of Dispersion for U-Boat Interpaait Times

Lower Bound Mean Upper Bound
Scenario 1 0.952 0.977 1.003
Scenario 2 0.918 0.960 1.002
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The mean index of dispersion for both scenaria®iiy close to 1. In fact, the
joint confidence intervals both cover 1.0, so thienmeot enough evidence to reject the
hypothesis that the mean index is equal to 1. &fites, the U-Boat arrival process

appears Poisson distributed.

4.4.5 Validation Conclusions

By comparing the results of the Bay of Biscay agsaged simulation to the
historical record, there are good indications thatmodel is capable of simulating the
real-world scenario. The U-Boat arrival procesthm simulation appears Poisson, as
history indicates the real-world process was. Harrhore, given a level of effort of
aircraft search sufficiently close to that in tle@lrworld, the simulation sightings and
kills results are in line with the historical redorThough there are statistical differences
in each scenario, the practical magnitude of tgerences is relatively small. Given
the model was able to produce similarly close tesaler two markedly different

scenarios, the Bay of Biscay agent-based simulaiarrobust representation as well.

There are two reasons for accepting the existisgrdpancies between simulation
and historical results. First, the real-world sohtours are of suspect fidelity. As a
result, the search effort can only be said to bes&’ to the historical reality. Second,
the statistical tests assume the real-world ewepresents the mean of all similar
conflicts. The extent to which this particular @a deviates from the mean of all such
conflicts cannot be known, so exact validationg€even statistical) are not achievable.
However, a novel statistical approach for simulatralidation of a mission-level model

is developed in Chapter V. This test addressessie of uncertainty surrounding the
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extent to which the single real-world outcome repres the mean result of all such

conflicts.

As validation literature suggests, it is impossiiolesay with certainty that a model
is validated. However, the statistical validatiests outlined above indicate the Bay of

Biscay agent-based simulation is a good representat the real-world operation.

4.5 Extensions to Modern Problems

In the more than sixty years since the Bay of Bismpaign took place,
submarine technology has outdated the simulatethsos with respect to modern
submarine/anti-submarine operations. Modern nuskelamarines are faster, do not need
to surface for extraordinarily extended periodsimog, are able to stay out of port for
months of continuous operation, and are able t@trauch deeper than was possible
during WW Il. As a result, radar and visual sedglair for submarines is generally an
ineffective proposition. In spite of this, the Isafr the Bay of Biscay scenario can be
widely applied to current operations, beyond pureiltary applications and into the

realm of law enforcement, immigration, treaty viegtion, arms inspection, and others.

4.5.1 Scenario Fundamentals

The properties underlying the offensive searciHXfdsoats in the Bay of Biscay
suggest that other situations may be investigaiddsimilar agent-based tools. Because

of the nature of these situations, the discussdroim the viewpoint of the searching

party.
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One of the primary characteristics of the Bay afdaly scenario is that the target
may not be in the search zone. Fundamentallyagpect varies from the majority of the
modern literature on analytical search methods¢hvtypically assume one or more
targets within the search zone. Though the tasgetown to pass through the search

area, there are an unknown number of targets ireifien at any given time.

Although the area of origin and area of operatianveell known to the searchers,
these areas are beyond their influence, so acfjamst the targets is severely constrained
at the point of origin and operation and is effeslyy possible only when the target is in
transit between its origin and operational zoneorédver, it is known that the target
must pass through the search zone to get to itmtpg zone, and it must pass through it

again on its way back to its origin point.

The target is mobile, and while in transit, they&tris uncooperative (in search
terminology this means the target is not willingoefound and is actively working to
avoid detection). However, while the target isamerative, it is visible and vulnerable

to detection, at least for short time periods.

Finally, the search assets come from outside thecBe@rea. These assets are

limited in number and capability, and as a reshéy are not always in the search zone.

4.5.2 Possible Modern Applications

Though this research may no longer be applicabétiesubmarine operations,
there are modern applications which have charatiesisimilar to the simulated

scenario. Several of these are discussed below.
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lllegal Immigration Border control is an important issue that hasyna

characteristics featured in the Bay of Biscay adpased simulation. The illegal
immigrants (targets) leave their country (poinbagin), cross a border (search zone),
and eventually meld into the population of the idesion country (operation zone). The
border patrol has limited assets and must covengtlthy border. The point of origin is
outside the jurisdiction of the border patrol (sb&rs), and once mingled with the host
population, the targets are very difficult to id&nt However, there is a time between
crossing the border and reaching their destinatioen targets are vulnerable to

detection.

(Drug) Smuggling Interdictian Smuggling scenarios are very similar to scesario

involving illegal immigration, and the smuggling @rfugs from one country to another is
of particular concern. The drug smugglers (ta)dets/e their country (point of origin)
with the product, cross a border (search zone) gaadtually deliver to the front end of
some domestic distribution system (operation zoi)ce the product enters the
distribution system, it becomes very difficult tibeetively interdict, and the country of
origin is outside the direct control of the searsheHowever, interdiction in transit,
when the product is massed, provides the oppoyttmieffectively impact illicit product

supply in the operation zone.

Terrorist Identification and InterdictionTerrorist identification and interdiction

is a subject currently gaining an enormous amobiattention, and it is a scenario to
which this type of agent-based simulation may He bprovide significant insights.

Since terrorists most often do not wear uniformeytare not visible as terrorists until
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they are in the process of a terrorist act. Oheg teach their operation zone, it is often
too late to prevent their mission from being astgzartially carried out. Therefore, the
opportunity to identify and interdict them mustwekile in transit. This is perhaps most
applicable to the Israelis, who share a contrdiedtier with the typical terrorist

population.

Treaty Verification (SCUD Hunting) Though SCUD hunting differs somewhat

from the previous examples, it is sufficiently damnito indicate that agent-based
simulation may be applicable. In the case of aabdnbut deployable, weapon system
such as the SCUD missile in Iraqg, the weapon systambe hidden or made to blend in
with other equipment, but when deployed, the systevalnerable to detection. Since
the system has a limited range, search can bestinit areas from where launches would
most likely occur to strike probable targets. Agdimited search assets are available

and must be mobile to “catch” the system whendeployed.

This application is particularly interesting in tbentext of the Bay of Biscay
agent-based simulation as well. Finding SCUD rasdias been a significant political
objective since the Gulf War, and as a resultag received a considerable amount of
consideration within the military community. Thetion of applying anti-submarine
warfare (ASW) principles to finding SCUD missileaswproposed in [Wirtz, 1997] and
[Connor, 1997], and successful application to ASMhe Bay of Biscay agent-based
simulation suggests that the techniques of agesgebaimulation could be extended to

the problem of locating SCUD missiles as well.
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Mobile Chemical Weapons Production Facilitidske the previous example,

searching for mobile chemical and biological weapproduction facilities is a scenario
that differs somewhat from that of the Bay of Bigdaut it does have enough similarities

to indicate an agent-based approach may providghiiss

Mobile chemical weapons production facilities airtually impossible to find
and identify when not in production mode. Howewenen producing the chemical or
biological agents, the facility must be stationaboreover, specific, easily identifiable
support equipment must be present when producfitmecchemical agents is ongoing.
Therefore, while in production mode, the facilisymulnerable to detection. Additionally,
these facilities must be within range of deliverthgir products to capable handling
facilities [Powell, 2003]. Therefore, a probabdasch area can be determined for

extremely limited search assets within a hostidrenment.

4.5.3 Summary

Though the preceding examples are not the onlyesiwenthat have the above
characteristics, these are some that are direatlgarned with national security and have

been of recent widespread interest.

4.6 Conclusion

This chapter outlined several important contribosioo the field of agent-based
combat simulation. First, through the developnwithe Bay of Biscay agent-based
simulation, the state-of-the-art in agent-basedlmirimulation is extended. This

simulation is the first agent-based combat simaitatd reproduce a real-world mission-
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level scenario. Second, the simulation was vaddiatgainst the historical record,
including the emergent behavior of the U-Boat agjeiithird, through the validation of
the simulation, a use for the V&V taxonomy outlinedChapter 11l was demonstrated.
Fourth, acknowledging the remoteness of the sinaunldab modern anti-submarine
activity, the Bay of Biscay offensive search scenamas tied to relevant modern

security/defense applications.
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V. New Statistical Approach to Validating Agent-Bagd Combat
Simulations

Combat, unlike many real-world processes, tend®tsingular in nature. That is,
there are not multiple occurrences from which tpdiiaesize a probability distribution
model of the real-world system. Engagement ma@eld to be singular due to their
relatively short duration. Mission-level modelsytdfer more flexibility on some
measures due to their extended time frame. Additip, the parameters involved in the
model may be unchanged for significant stretchélefotal simulation time. In these
cases, time periods may be devised such that tiepéhold sufficiently similar traits
such that the incremental results may be assumeaie from a common distribution.
For example, with respect to a simulation mode$iageral months of operations, the
results may be compiled monthly, thereby providimgtiple samples of historic

behavior from a single instance.

This chapter details a new statistical test forinsalidating a mission-level
model. The test is developed within the contexhefBay of Biscay agent-based
simulation and uses the monthly data from the elddrcampaign as a basis of

comparison to the simulation output.

5.1 Motivation for a New Validation Test

In the previous chapter, several standard statigigsts for the validation of a

combat simulation were presented. The tests cardghae overall MOE values for each
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of two scenarios simulating six months of combatragions. The comparisons between
historical and simulated outcomes were favoralyid,the validation process suggests
that the simulation is a good representation ostienarios as they happened. The fact
remains, however, that the historical outcomessliita single sample from a stochastic
process (i.e. combat). The statistical comparisoade in the validation process were
based on the assumption that the historic resejiisesent the mean value of all possible
outcomes. A favorable comparison of the simulatiith the underlying stochastic
process that produced the single historic samplgddvarovide greater confidence that

the model is a valid representation of the realleveystem.

Examining Bay of Biscay historic outcomes by momtisfead of aggregated,
provides a convenient method for examining thealmlity of the real-world system.
Mean monthly values for each MOE of interest (4.18}h real-world and simulated, can
be calculated and compared. The resulting angbysigdes additional insight not
available through the techniques previously presirdlthough it still lacks quantifiable
confidence to conclusions about the validity of $iraulation. The data generated from
the Bay of Biscay agent-based simulation are usel@tonstrate the strengths and

weaknesses of this approach.

Figures 5.1 through 5.6 depict the historic versosilated mean monthly MOE
values via joint confidence intervals for eachha three MOESs in both scenarios. Each
figure shows 21 individual confidence intervalghe left-most being the historic value

with the remaining 20 coming from each of 20 sirtialaiterations. Joint confidence
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intervals were constructed to allow an overall §0%t confidence level (k = 2) for each

comparison.

Figures 5.1 and 5.2 show the mean monthly aire@atie hours for Scenario 1

and Scenario 2, respectively.

Mean Monthly Aircraft Sortie Hours (Scenario 1)
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Figure 5.1 Comparisons of Mean Monthly Sortie Hours, Historic vsSimulated

Scenario 1

The confidence intervals from each simulation tieraof Scenario 1 overlap the
confidence interval derived from the historicaladafhe implication from this is that for
any individual comparison between an iteration dnedhistorical data, the means cannot

be said to be statistically (significantly) diffeite
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Recall from Table 4.6, the real-world sortie haatat over the 6-month scenario
was slightly outside the confidence interval getestdrom the simulation iteration totals.
The validation argument used to accept the resuiald despite the difference was
based on the uncertainty surrounding the veraéitgereal-world records and the small
magnitude of the difference when viewed in prattieems. The results demonstrated in

Figure 5.1 reinforce this conclusion.

Mean Monthly Aircraft Sortie Hours (Scenario 2)
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Figure 5.2 Comparisons of Mean Monthly Sortie Hours, Historic vsSimulated

Scenario 2

In Figure 5.2, all the confidence intervals deriyiexim the output data overlap the
confidence interval derived from the historicaladfdr Scenario 2. As with Figure 5.1,

Figure 5.2 gives face-level support (with no reatistical confidence added) that the
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level of effort for Allied aircraft agents withitné simulation is a reasonable

approximation for the actual level of effort usedhe real-world operation.

Figure 5.1 and Figure 5.2 indicate that variancthefsimulation is apparently
smaller than that of the real-world process by@gpreciable amount. This is an expected
result in the case of sortie hours flown. Oneaadsr this is that weather is one of the
two stochastic factors controlling sortie genematid@he simulated impact of weather is a
probability derived as an average value of sod#gelled over the entire four years of
operations in the Bay of Biscay. This averagin@athed the variation that actually
occurred month-to-month. Scenario 2 is particylaripacted by this because the
summer of 1943 had unusually good weather. Asualtref good weather, the Allied
aircraft were able to fly an unusually large petage of scheduled sorties [McCue,

1990].

Even with no further analysis, a major shortconohthis validation approach
becomes evident. In preparing for the comparisangnalyst must choose two
unattractive options when constructing joint coafide intervals. The first option is to
compare each simulation iteration to the histoatacat some known confidence level
(e.g. 80% with k = 2, as presented in Figures irdugh 5.6). The second option is to
construct the intervals such that all simulati@nations versus historic outcome
comparisons taken together have a known joint denfie level (i.e. k = 21). If the
former option is chosen, the resulting joint coafide level for all 20 comparisons is near
zero. If the latter is chosen, the overall confickelevel is known, but the individual

confidence intervals are so large they cease thdogiminating.
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Acknowledging this significant shortfall in the appch, the MOE results
(U-Boats sighted and U-Boats killed) for each @& #imulated scenarios are presented.

Figure 5.3 and Figure 5.4 show the comparisongflte from Scenario 1.

Mean Monthly U-Boat Sightings (Scenario 1)
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Figure 5.3 Comparisons of Mean Monthly U-Boat Sightings, Histod vs. Simulated

Scenario 1

In Figure 5.3, as with the comparisons of levelgftdrt, there is 100% overlap of
the confidence intervals generated from the meantimpU-Boat sightings and the

confidence interval derived from the historicalalat
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Mean Monthly U-Boat Kills (Scenario 1)
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Figure 5.4 Comparisons of Mean Monthly U-Boat Kills, Historicvs. Simulated

Scenario 1

In Figure 5.4, there is again 100% overlap of aberice intervals in comparing
individual simulation iteration means to the realrd data. Recall from Table 4.9 that
the number of total kills over the 6-month scen#lbslightly outside the confidence
interval derived from the simulation totals. Adlihe case of total sortie hours, the
practical implications of the difference were smaiid the simulated result was accepted
as a valid approximation of the real-world systdrigure 5.4 provides face-level support

for this conclusion.

Figure 5.5 and Figure 5.6 show the simulation tedol U-Boats sighted and

U-Boats killed, respectively, for Scenario 2.
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Mean Monthly U-Boat Sightings (Scenario 2)

100.0

r Historical Data
90.0

80.0

70.0 *

o
A4

o

°

60.0 *

50.0

Sightings
°
° o
* *
.
*
°
°
*
LQ——Q
o
L
.
*
°
*>
o
*
°
*
°
*>
o—eo
*r—e
o
v
°
4

40.0

30.0

20.0 — —— —

Simulation Data

10.0

0.0

Figure 5.5 Comparisons of Mean Monthly U-Boat Sightings, Histod vs. Simulated

Scenario 2

As in the previous examples, Figure 5.5 indicat®¥4 confidence level overlap
in comparing individual simulation iteration medoghe real-world data. Recall from
Table 4.12 that the number of total U-Boat sighginger the 6-month scenario fell
slightly outside the confidence interval deriveonfrthe simulation totals. As with the
case of total sortie hours and U-Boat kills in Sg@n1, the practical implication of this
difference was small, and the simulated result acaepted as a valid approximation of

the real-world system. Figure 5.5 provides fasellsupport for this conclusion.
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Mean Monthly U-Boat Kills (Scenario 2)
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Figure 5.6 Comparisons of Mean Monthly U-Boat Kills, Historicvs. Simulated

Scenario 2

Figure 5.6 demonstrates that there is 100% overfléipe confidence intervals
generated from the mean monthly U-Boat kills arat tf the confidence interval derived

from the real-world data for Scenario 2.

Because of the analytic dilemma surrounding that jconfidence level, this
method of analysis provides little more than faeeel confidence. The statistical
confidence remains near zero. However, the apprisaempting in that it offers insight
into the stochastic nature underlying a real-wsylstem with a single occurrence
(sample size of 1). The remainder of this chajstdevoted to developing and
demonstrating a test methodology that allows fatigically significant comparisons,

despite having a single real-world sample.
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5.2 Methodology for Comparison of Historic versus Smulated Data

Any test allowing a meaningful comparison betwdentistoric outcome and the
simulated data, while still providing insight irtiee underlying stochastic real-world
system, requires two characteristics. First, tieéhod must provide a means of deriving
multiple samples from the stochastic process uyiteykhe real-world system. Second,
the method must provide a meaningful, quantifidéie! of confidence in the result.

Figure 5.7 illustrates an approach that meets taathirements.

Run Simulation
m time periods
n iterations

i—

Resample from
historic data
m per sample
n samples

‘

Perform sign test
1 resample vs. 1
iteration
n comparisons

]

Figure 5.7 Methodology for Comparisons of a Single-Sampled Real-WadrProcess

to Simulated Results

Once the simulation results fromiterations are generated, the historic data is

used to generatebootstrap samples. A sign test is used to teshypothesis that the
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two samples are statistically identical. The btvafsand sign test is then replicated for

multiple experiments.

The basic approach above is based on well-acceptgohrametric statistical
techniques. Once the simulation data has beeectetl, the basic approach has the
added benefit of being simple to execute and caguiskly performed within a

spreadsheet.

5.2.1 Bootstrap

Several statistical resampling techniques have Hegeloped to provide
estimators of population parameters that are ditficr impossible to treat theoretically
[Conover, 1999] or when obtaining multiple samgtesn a system is prohibitively
expensive [Cheng, 2001]. Resampling is based ®idta that when one random sample
is available and obtaining another sample is radifde, then the best estimate for the

distribution under study is the random sample ineha

Efron (1979) first proposed the bootstrap methoesdmpling. Since it was first
proposed, the method has found wide acceptancampitability. Efron and Tibshirani

(1986) review the bootstrap method and its appéioat

The Method Consider the statistig calculated from the random sample X ={X

Xz, ..., Xn}. A bootstrap sample X={ X;, X, ..., X} is generated by taking a
random sample from X, Wherlé(xj(j =12,..n=X,(1=12...,n) -1 , for which®’,
n

an estimator fo8, is computed from the bootstrap sample. If soomaber, B, Monte
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Carlo replications are taken, then the distributbfl can be estimated by the sample

mean and standard deviation@of

Sample Size, BThe number of bootstrap samples needed to aetyedtimate

the properties of the sample statistic vary. Efiod Tibshirani (1986) note that for most
situations, B = 50 to 200 is “quite adequate,” @ilo@50 or more are often needed for
accurate computation of confidence intervals. @eng¢1999) adds that “as few as 25

replications can be very informative”.

Proposed UseThe bootstrap used differs slightly for the pregd methodology.
Instead of a single collection of bootstrap sampfese historic data, m groups of b
bootstrap samples were generated for comparisdntiat simulation, where b = the

number of simulation iterations and m = numberigi $est trials desired.

Assumptions and Remedial MethodBootstrap resampling assumes the original

sample is independent and identically distribuiedi(). Since the historic data from the
Bay of Biscay operations consists of calendar (laatime-series data), it is likely that
the MOE data is autocorrelated to some degreele Bab shows the calculated

autocorrelation (1 time lag) for the data from e&clenario.

Table 5.1 Autocorrelation of Historic MOE Values

Scenario 1 Scenario 2

Sortie Hours 0.0688 0.4732

U-Boat Sightingg 0.5345 0.1192

U-Boat Kills 0.1667 -0.3189
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From Table 5.1, it appears that autocorrelaticanisssue with Scenario 1 U-Boat
Sightings, Scenario 2 Sortie Hours, and ScenatieBbat kills. Statistically, however,
the extremely small sample size< 6) for both Scenarios does not provide any
conclusive evidence that the samples are autoabetkl This small sample size also
prevents the practical application of remedial da&asures that could treat the
correlation within the samples. There are metloddeeating autocorrelated samples so
that the bootstrap assumptions can be met. Thénmblocks bootstrap is one method

that extends the bootstrap to time series dateojiRi?001].

In the moving blocks bootstrap, the time series @apartitioned intd non-
overlapping blocks consisting bsequential observations. Valuesand| are chosen
so that the correlation within each of the blockstrong, but weak between blocks. With
| correctly chosen, theblocks are considered independent. The bootstetipod
randomly samples with replacement from bhglocks to obtain a series lof

observations.

The moving blocks bootstrap is not a feasible smiuto the specific problem
posed by the Bay of Biscay scenario validation.ddtae small number of observations
in each validation set prevents effective blocksegemes. The fidelity of the available
data also represents an obstacle. Data for theBRBigcay operations are available in
monthly increments (observations). If the dataensrailable in smaller time increments

(more observations), then perhaps a viable blockangme could be contrived.
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Combat operations will perpetually pose sample ginblems since real-world
operations seldom maintain stationary/static sgfase tactics, or technologies long

enough to produce data of a significant sample size

5.2.2 Sign Test

The sign test is used to test whether one randamabla in a pair (X, Y) tends to
be larger than the other random variable in the gais a variant of the binomial test in
which the probability of outcome is assumed to dpeadly likely, p=1-p=0.5

[Conover, 1999].

Data for the sign test consistsrofpairs of observations ¢XY1), (X2, Y2), ...,
(Xw, Yr), each observation being a bivariate random sampithin each (X Y;)
observation, a comparison is made, and the palassified as “+” if X< Y;, “~" if X >
Yi, or “0” if X; = Y;. The test statistid, is the number of “+” pairs. The null
distribution ofT is the binomial distribution witp = %2 andn = number of non-tied pairs

(tied pairs are disregarded).

The sign test assumes that the bivariate pairmataally independent, and the
probability of outcome is constant for all triald.further assumes that the measurement
scale within each pair is at least ordinal, thaash (3 Y;) pair may be determined to be
“+7, “=" or “0”. Finally, the sign test assumelsdre is internal consistency between the

observed pairs.
For model validation purposes, the two-tailed teslesired. That is,

Ho: P(+) = P(-)

151



Hi: P(+)# P(-).

This is the hypothesis test demonstrated with e & Biscay agent-based simulation

data in Section 5.3.

The criticala-values are determined for each test anbas been determined.
Because the binomial distribution is discrete,dhigcal a-values cannot be arbitrarily
set. Instead, the criticallevel is selected such that the total (&)devel is as close to

0.9 as possible, without being less than 0.9, gavearticulan. That is, H is rejected if

the p-value for the test is less than 0.05.

5.3 Bay of Biscay Agent-Based Simulation Results

The presentation of results follows the same oaden the previous analyses.
That is, the comparisons of sortie hours for baetmnarios are presented first, followed by

the remaining MOEs from each scenario, respectively

Each MOE was subjected to identical experimenischEexperiment consists of
twenty sign testani = 20), with each sign test incorporating twentye@er simulation
iteration) bootstrap samples € 20). For each MOE, one sign test is presemetdiail,

and the remaining tests are summarized prior tdatn discussions.

5.3.1 Sortie Hours

Previous analyses of sortie hours provided a soraewmixed picture of the
simulation’s fidelity with respect to the histodata. The historic sortie hour total for

Scenario 1 was slightly outside the simulation @warice interval, though the practical
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difference was negligible. Comparisons betweerctmidence interval generated by the
historic monthly data and those generated from éacition’s monthly data, however,
demonstrated 100% overlap, and hence, no statidifterence between the results from
any individual iteration and the historic data.isTapproach, however, lacked any
meaningful confidence when all such comparisoneuaken together. The historic
sortie hour total from Scenario 2 was well withre ttonfidence interval derived from the

simulation data.

Table 5.2 shows the bootstrap samples for Scetaswotie hours generated for a
single replication of the bootstrap/sign test ekpent. The monthly bootstrap sortie

hours are totaled in the right-most column.
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Table 5.2 Bootstrap Sortie Hours — Scenario 1

B0

b0

DO

B0

DO

DO

B0

DO

B0

b0

DO

DO

b0

B0

D0

b0

D0

B0

DO

Sortie Hours
Trial | Month1 | Month2| Month3 Month4 Month®% Month|6 abt
1| 3,400 3,400 4,100 4,600 4,100 3,130 22,7
21 3,400 3,130 4,100 3,130 4,400 4,600 22,7
3| 3,400 3,400 4,100 4,400 4,600 4,600 24,5
41 4,100 4,600 4,600 4,400 4,600 3,130 25,4
51 4,600 4,600 4,100 4,100 3,400 4,100 24,9
6| 4,600 4,100 4,400 4,100 4,600 4,400 26,2
7| 4,600 3,400 4,100 4,400 4,100 3,130 23,7
8| 4,100 4,400 4,100 4,400 4,600 3,400 25,0
9 3,130 4,400 4,400 4,600 4,400 4,600 25,5
10| 3,130 3,130 4,400 4,100 4,400 4,400 23,5
11| 3,400 4,100 4,100 4,600 4,100 4,600 24,9
12| 4,100 4,600 4,100 4,100 4,100 4,600 25,6
13| 3,130 4,400 3,130 4,100 4,600 4,100 23,4
14| 3,130 3,400 4,600 4,400 4,600 4,100 24,2
15| 4,600 4,600 3,130 3,400 3,130 3,130 21,9
16| 3,400 4,100 4,400 3,130 3,130 4,100 22,2
17| 3,130 4,600 3,130 3,130 4,100 4,100 22,1
18| 3,400 4,600 3,130 4,400 4,100 4,600 24,2
19| 3,400 3,400 4,400 4,600 4,600 4,600 25,0
20| 4,400 4,600 4,600 4,600 4,600 3,130 25,9

B0

Table 5.3 summarizes the sign test classificationthe paired data (XY;) for

Scenario 1, whereXs thei" bootstrap sortie hour total and i§ the sortie hour total

from thei™ simulation iteration from Table 4.4. The signtt&stisticT and number of

non-tied pairs are displayed as well.
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Table 5.3 Sign Test Calculations — Sortie Hourgn&cio 1

Observation 1 2 3 4 5 6 7 8 9 10

Sign - - + — - - + — - +
Observation 11 12 13 14 15 16 17 18 19 20
Sign - - - - + + + + + —
T 8

n 20

Forn=20, P(<5) = 0.0207 and P¢ 14) = 0.0207 defining an overall (1o =
0.9586. Since 5 ¥ = 8 < 14, there is insufficient evidence to rejegt For this trial,
there is no compelling evidence to suggest the lation does not faithfully represent the

real-world system with respect to Scenario 1 st¢nviers. The resulting p-value is

0.2517.

The results for the entire experiment are summarnizd able 5.4. Of the 20 sign
test trials, the p-values ranged in value from 0.t220.412. Under the rejection criteria,

the null hypothesis was rejected for 3 of the Zdr
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Table 5.4 Summary of 20 Bootstrap Experiments tmm@rio 1 Sortie Hours

Comparison Classification
Trial | 1| 2| 3| 4| 5| 6| 7/ 8§ 9 10 1p 1 13 14 15 {6 |17 (1B | 20| T| n p—
value
1| =] = +| =| =| = + +H o + — — B = T + 2 t t - |8 RO Q.25
20 = = = +| | | +H +H H + - — — B - T F + - - |8 RO Q.25
3| = = = + = -] H 4 H +H 4 4 1 A 4 - -t | |6 pO 8.05
41 —| =| +| +| -| -| - H - 4 4 4 - 4 - -t | |6 pO 8.05
51 =1 = +| +| =| —=| + + +H + - — — B = + - + - - |8 RO Q.25
6| - —=| *| =| -| =| - 49 4 H 9 1 A . - - ¢+ F = |5 RO 0.02
T =1 = *+| | = | | 4 H + - 94 49 A 4 - + -+ |6 RO 8.05
8| —| —| +| +| =| =| | H H + - — — B - 1 F + + - |9 RO 241
9| = +| —=| +| = =| | H H + - H o A 4 g = -+ |8 RO .25
10| = = +| +| =| = +H H H + - 4 +H A 4 - + + + - |9 RO 124
1| = = +| +| =| = - H H + - 4 = A - F + + + - |9 RO 124
12 = = +| +| = * - 4 4 - 9 4 A g - - +  ®F |- |5 [20 20.
B | = +| | -| - 4 4 +H H A - 1 - - + - |+ |+ |5 [20 20.
4| - = = +| = = H H H + - 94 = A - - F ot | |8 pO 52
5| = = +| +| =| = - H 4 +H H 4 A g - -+ o+ F = |7 RO 321
16| —| - L I I B R I s e T - - r + + |- |6 [0 58.
17| = = +| +| =| = - H H + - 4 9 A - - o+ F |7 RO 3]
8| - +| = +| =| = *H 4 4 - H 14 A g - -t o+ F = |7 RO 321
19| = = +| +| =| = - H 4 - 9 4 A g - -t o+ F = |7 RO 321
20| —| =| +| = | o H H H H H 4 9 A 1 - -+ F |7 RO 3@]

Table 5.5 shows the bootstrap samples of Scenawsti2 hours generated for a
single replication of the bootstrap/sign test ekpent. The monthly bootstrap sortie

hours are totaled in the right-most column.
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Table 5.5 Bootstrap Sortie Hours — Scenario 2

Sortie Hours
Trial | Month1 | Month2 | Month3| Month4| Month§ Month¢ &bt
1 5,900 5,350 7,000 5,900 7,000 7,000 38,150
2 8,000 8,700 8,700 7,000 5,900 7,000 45,300
3 5,900 5,900 4,200 4,200 7,000 8,700 35,900
4 7,000 8,000 5,900 4,200 8,000 8,700 41,800
5 8,000 4,200 8,700 5,900 5,350 4,200 36,350
6 7,000 5,900 7,000 8,000 4,200 5,900 38,000
7 7,000 7,000 7,000 7,000 4,200 7,000 39,200
8 5,350 5,350 8,700 5,350 5,900 5,350 36,000
9 4,200 5,350 7,000 8,700 5,350 5,350 35,950
10 7,000 8,000 7,000 8,700 8,700 7,000 46,400
11 8,000 5,350 8,700 7,000 8,700 5,350 43,100
12 5,350 8,700 5,900 8,000 4,200 7,000 39,150
13 8,700 8,000 5,350 8,000 5,900 4,200 40,150
14 4,200 8,700 5,350 7,000 5,900 5,900 37,050
15 8,700 8,000 5,350 5,900 4,200 8,700 40,850
16 8,700 5,350 7,000 8,700 5,900 5,350 41,000
17 8,700 5,900 4,200 5,350 8,700 8,000 40,850
18 4,200 4,200 5,350 8,700 8,700 8,700 39,850
19 5,900 7,000 7,000 5,350 8,700 5,350 39,300
20 4,200 7,000 8,000 8,700 5,350 4,200 37,450

Table 5.6 summarizes the sign test classificationthe paired data (XY;) for

Scenario 2 sortie hours, whereiXthei™ bootstrap sortie hour total and i the sortie

hour total from thé™ simulation iteration from Table 4.5. The sigrt t&stisticT and

number of non-tied pains are displayed as well.
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Table 5.6 Sign Test Calculations — Sortie Hourgn&cio 2

Observation 1 2 3 4 5 6 7 8 9 10

Sign — — + — + + + + + —

Observation 11 12 13 14 15 16 17 18 19 20

Sign - + - - - - - + + +
T 10
n 20

Forn=20, P(<5) = 0.0207 and P¢ 14) = 0.0207 defining an overall (1o =
0.9586. Since 5 ¥ = 10 < 14, there is insufficient evidence to rejde. There is no
compelling evidence to suggest the simulation ca¢gaithfully represent the real-world

system with respect to Scenario 2 sortie hourse rébulting p-value is 0.3238.

The results for the entire experiment are summarnizd able 5.7. Of the 20 sign
test trials, the p-values ranged in value from 0.t220.412. Under the rejection criteria,

the null hypothesis was rejected in 1 of the 28lgri
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Table 5.7 Summary of 20 Bootstrap Experiments tmm@rio 2 Sortie Hours

Comparison Classification
Trial | 1| 2| 3| 4| 5/ 6| 7/ 8§ 9 10 11 1 13 14 15 {6 |17 (1B | 20| T n p—-
value
1| = = +| —=| +| +| +| + + - - + — - . 4 - |- + + 10 RO 124
20 = +| = = +| —=| +| + +H +| + + - 4 - 4 4 : H + 13 20 3RBO
3 —| = =| 4| +| +| + + - +| + + - 4 + i 4 : + - 12 20 321
40 —| = =| =| +| —| + +H +H - + HoOH A - 4 4 : H + 13 20 3RBO
51 = =| +| +| +| —=| +| + + - - + — - . + e + |- |- 11 20 522
6| - +| - +| = + + o+ - + + — — B + 4 4 - t 12 20 32
71 -1 -1 | =| +| | + - H + A + - + 4 L - t+ + - 7 RO .13
8| —| = =| —| +| +| + + +H - - — — + + 4 - + + 10 RO 124
9| —| —| = =| —| - 4 Hoo+H o+ H OH 4 + 4 1 H F Fo12 20 32
10| = | =| —=| —=| +| + + +H 4 + + — - 4 4 1 + - t t+ 11 PO 252
11| —| —| +| +| + - - H o+ + + 4 4 B 1 + - - - 9 PO 124
12| —| =| +| +| —=| +| + - H + + + - + + . . + - F 12 R0 132
13| - = = +| =| -| 4 4 4 H + + . 4 + - i - H H 8 PO 5.7
14| —| +| —=| +| - - - H o+ + + +H + + . 4 F + 14 20 0ZL
15| —=| =| = —-| + +H o+ H O+ + — — + + + . + |- o 13 20 03B
16| —| +| —-| -| - +H 4 H O+ — H oA u E 1 F F t - 11 PO 252
17| = = =| =| = o H H 4 + - i u + 1 i t - H - 7 RO 321
18| —| =| —=| —=| +| - H H H - + +H - 4 4 1 + o + F 12 20 132
19| —| =| =] + + -+ H O+ + — — — 4 e F F - t 10 PO 41Q
20 = | =| = + —| + H H = - = i i - F + t t t 10 RO 412

Both sign test experiments tend to indicate theaulstion is representative of the
level of effort given by the Allied aircraft in tHestorical combat operations. In the case
of Scenario 1 sortie hours, the bootstrap/signregstted the null hypothesis in 15% of
the trials. With respect to Scenario 2 sortie Bptire bootstrap/sign test method rejected
the null hypothesis in 5% of the trials. Thesailss in effect, bridge the gap between
the previous validation methods, in which the satioh result for Scenario 1 sortie
hours was statistically rejected and the resulSicenario 2 sortie hours was not rejected
as statistically different. These conclusions e\a stronger indication of model

acceptability than either of the previous testsalmeepting the model as valid.
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5.3.2 Scenario 1 MOEs

Previous analyses of Scenario 1 MOEs provided asdmat mixed picture of the
simulation’s fidelity with respect to the histodata. The historic U-Boat kills total was
slightly outside the simulation confidence intertbugh the practical difference was
negligible. Comparisons between the confidencerwnall generated by the historic
monthly data and those generated from each ite‘atroonthly data, however,
demonstrated 100% overlap, and hence, no statidifterence between the results from
any individual iteration and the historic data.isT&pproach also lacked any meaningful
confidence when all such comparisons were takeetheg. The historic U-Boat
sightings total was well within the confidence mid derived from the simulation data.
The subsequent analysis with respect to the montkns showed similar results to the

U-Boat kills with the identical problem of provigdjmo joint confidence.

Table 5.8 shows the bootstrap samples for ScefddiBoat sightings generated
for comparison with the simulation results. Thentidy bootstrap U-Boat sightings are

totaled in the right-most column.
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Table 5.8 Bootstrap U-Boat Sightings — Scenario 1

U-Boat Sightings

Trial | Month1 | Month2| Month3 Month4 Month®% Month|6 abt
1 14 18 10 42 42 42 168
2 18 14 42 18 19 18 129
3 18 18 19 18 19 14 106
4 10 14 14 14 42 14 108
5 14 19 42 32 42 19 168
6 42 18 32 32 42 14 180
7 19 32 14 32 18 19 134
8 18 14 14 10 14 42 112
9 18 19 18 42 18 19 134
10 32 32 32 32 18 18 164
11 32 10 19 14 10 32 117
12 10 19 42 32 10 32 145
13 32 19 19 42 18 18 148
14 32 32 42 42 42 10 200
15 10 32 14 18 18 32 124
16 32 32 10 18 42 14 148
17 19 19 14 19 19 32 122
18 32 19 42 18 32 14 157
19 10 19 19 32 32 32 144
20 32 42 10 32 42 14 172

Table 5.9 summarizes the sign test classificationthe paired data (XY;) for
Scenario 1 U-Boat sightings, whereiXthei™ bootstrap U-Boat sightings total angiy
the U-Boat sightings total from th® simulation iteration from Table 4.7. The sigrttes

statisticT and number of non-tied painsare displayed as well.
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Table 5.9 Sign Test Calculations — U-Boat Sightjrisenario 1

Observation 1 2 3 4 5 6 7 8 9 10

Sign — 0 + + — — + + + +

Observation 11 12 13 14 15 16 17 18 19 20

Sign - + - — + - - — + -
T 9
n 19

For n =19, R(<5) = 0.0358 and P¢ 13) = 0.0358 defining an overall (1o =
0.9284. Since 5 ¥ =9 < 13, there is insufficient evidence to rejdgt There is no
compelling evidence to suggest the simulation ca¢gaithfully represent the real-world

system with respect to Scenario 1 U-Boat sightingse resulting p-value is 0.5.

The results for the entire experiment are summarnizd able 5.10. Of the 20
sign test trials, the p-values ranged in value fb@21 to 0.5. Under the rejection

criteria, the null hypothesis was rejected in 3hef 20 trials.
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Table 5.10 Summary of 20 Bootstrap ExperimentsSfmgnario 1 U-Boat Sightings

Comparison Classification
Trail | 1| 2| 3| 4| 5| 6/ 7/ 8§ 9 10 11 1 13 14 15 a6 |17 (1B | 20| T| n p—
value
1| - +| +| = = +] | O+ 4+ - + — . + - + o+ t - 9 19 0.50
21 = O +| +| —| —=| + + + + - + — . + - + o+ t - 9 19 0.50
3| = = = | =| -| o +H H + - + — + + 4 2 |- - 10 RO 124
41 = = +| = - -| A4 H H + - H A — . - - t I+ - 7 RO .13
5 - = +| = | +H 4 H + - + — B + e + |- + - 9 19 0.50
6 el e s T R I B I I . B - D t - 8 9 a.32
71 -1 = =] +| = + - 4 H + - + — B + + + + t t 9 PO Q41
8| —| + L e e s e ) ™ R . 4 1 E 14 20 U0
9| —| —| +| —| +| + -+ - - H A q = g + o I+ I 8 19 a.32
10| —| +| —| +| +| + + o H + +H 4+ 4 4 4 + E F 14 20 oA
11| —| —=| +| = + | o H H + — + — + = T T F + = 11 PO 252
L2+ +| = =| +| + + o A4 + o H 4 =+ + + + + F 9 p0 124
13 - +| - — HooH A A A — 4 . r - t+ t 11 PO 252
14 | —| —| 4| +| +| +| +| 4+ + + N — g —+ + F - - 10 RO 412
50 —| | =| + -] -/ 94 4 4 +H A 4 . = T+ % - t e 8 RO 5Q72
16 | —| = —| +| +| + - +H + + - + — — + —+ + F t - 10 PO 41Q
17| + | = —| +| +| +| +| 4+ + + -+ + + . g q + + - 12 19 08%
18| = | =| =| = = 4 H 4 # H - + - 4 4 L - M ~ — 5 20 20.
19 —| +| +| +| =| + - +H H + - + 4 + . 4 4+ 1 i 12 20 132
20 —| | + +H o+ - 4 4+ +H O+ A + + 4 & F i + 12 20 132

Table 5.11 shows the bootstrap samples of ScehddidBoat kills generated for a
single replication of the bootstrap/sign test ekpent. The monthly bootstrap U-Boat

kills are totaled in the right-most column.
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Table 5.11 Bootstrap U-Boat Kills — Scenario 1
U-Boat Kills

Trial | Month1 | Month2| Month 3| Month 4 Month5 Month|6 abt

OO (N[OOI |W[IN|F-

B
o|r|o|r|o|r|o|o|r|o|lo|r|o|o|o|o|r|r|r|o
o|o|r|r|o|o|r|o|lo|o|r|r|r|r|o|r|o|o|r|o
RlR|k|o|r|F|o|o|k|r|o|kR|kR|R|R|Rr|[FR|O|R |+~
Rlo|k|kR|o|kR|kR|F|FR|FR|FR|R|[O|R|R| P[RR RO
o|o|o|r|o|o|r|r|r|r|o|r|r|lolo|lo|o|o|o|+
RlR|olk|k|o|kr|k|kR|R|o|rR|rR|R|F|O|r|O|k |-
wlwlwla|v|w|d|w|la|s(N]|o|h A wlw| N o1fw

Table 5.12 summarizes the sign test classificationthe paired data (XY;) for
Scenario 1 U-Boat kills, where; 36 thei™ bootstrap U-Boat kills total and; ¥ the
U-Boat kills total from theé™ simulation iteration from Table 4.8. The signt stisticT

and number of non-tied painsare displayed as well.
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Table 5.12 Sign Test Calculations — U-Boat KillseBario 1

Observation 1 2 3 4 5 6 7 8 9 10

Sign - 0 + — + - + - - +

Observation 11 12 13 14 15 16 17 18 19 20

Sign 0 - - - + + - + + +
T 9
n 18

For n =18, R(<5) = 0.0481 and P¢ 12) = 0.0481 defining an overall (1o =
0.9038. Since 5 ¥ =9 < 12, there is insufficient evidence to rejdgt There is no
compelling evidence to suggest the simulation ca¢gaithfully represent the real-world

system with respect to Scenario 1 U-Boat kills.e Tlsulting p-value is 0.4073.

The results for the entire experiment are summadrnizd able 5.13. Of the 20
sign test trials, the p-values ranged in value fb@11 to 0.5. Under the rejection

criteria, the null hypothesis was rejected in 5hef 20 trials.
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Table 5.13 Summary of 20 Bootstrap ExperimentsSfgnario 1 U-Boat Kills

Comparison Classification
Trial | 1| 2| 3| 4| 5| 6/ 7/ 8 9 1¢ 11 1 13 14 15 (6 |17 |18 | 20| T | n V(EIJe
1 = ol +| = +| =| + < 4 + 0 - . 1 +  + + t - 9 18 @40
2| —| +| 0| =| O] Of + o H + + A 4 -+ 4 ( H F D 9 15 ai5
3(0|+| 0| —| +#| —=| #| O +H + o0 + -+ 0 + 4 g D + + 10 14 20
4| —| +| O —=| +| —=| +| - + + 0 — - q [ 1 L F 0 t 9 15 15
51 = +| =| = +| =| +| - +H + + + - = + i 1 1 + 12 20 321
6| —| +| +| =| +| —=| +| - + + 0 + - - + + q + 3 + 12 18 480
710l +1 0] =| =| = + H o+ 0 + - - + E g D i 0 9 14 0.Q9
8| -] 0| —| +] O | + -+ H H 9 A 1 - 3 + Foo11 18 181
9| = | +| = =] O] =| +# - +H + + 0o H A 4 1 F D t 9 6 0322
10| = +| +| O Of | - O H + + +H A - 4 F F t t + 10 [17 166.
11| —| +| O O +| —| + o H + + —+ -+ - 4 1 T D t - 10 [17 166
12| = | +| ol +| ol =l + + o + + + 0 — + 1 £ + i + 12 16 01
13| - Ol Of Of Of | H 4 4 +H 0O A a + 7 3 t + 0 0 7 (12 9a.1l
40| +| +| +| +| =| + = H + + - o 4 4 + ( + + t+ 12 1702
15| —| —| —| +| o - + +H +H + + — — . E g - + t - 19 00.5
16| =| +| ol =| ol =l + +H 4+ + - 0 - + E F L t 0] 15 50.]
17| - +| = O +#| O] 4 O Q + - H A g 4 F - D N 4 1.2
18| —| + -1 o - +H H4 H + O 0 -~ E F - D = P 14 96.3
19| —| + ol +| —| + Of + + + + —+H 4 + 1 . 3 D 12 17 02
20| —| O = =| O] 4 + O H + +H o H A 1 T H 3 t+ D 10 [16 106.

Both sign test experiments tend to indicate thatsiimulation is representative of
historical combat operations for Scenario 1. Bdhse of Scenario 1 U-Boat sightings,
the bootstrap/sign test rejected the null hypothesi5% of the trials. With respect to
Scenario 1 U-Boat kills, the bootstrap/sign testhmé rejected the null hypothesis in
25% of the trials. Rather than make a validationatusion based on a single statistical
pass/fail, as in the first analysis method, thet&toap/sign test methodology provides a
broader context to the simulation results. Thesaelts, in effect, give broader insight
into the validity of the simulation when the vauiildip of the real-world operation is
considered through the bootstrap. These conclagicovide stronger rationale than

either of the previous tests for accepting the rhadevalid with respect to the MOEs.
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5.3.3 Scenario 2 MOEs

Previous analyses of Scenario 2 MOEs provided asdrat mixed picture of the
simulation’s fidelity with respect to the histodata. The historic U-Boat sightings total
was slightly outside the simulation confidence iméd though the practical difference
was negligible. Comparisons between the confidémeeval generated by the historic
monthly data and those generated from each ite‘atroonthly data, however,
demonstrated 100% overlap, and hence, no statidifterence between the results from
any individual iteration and the historic data. isTapproach, however, also lacked any
meaningful confidence when all such comparisoneuaken together. The historic U-
Boat kills total was well within the confidenceenval derived from the simulation data.
The subsequent analysis with respect to the montkgns showed similar results to the

sightings with the identical joint confidence pretol.

Table 5.14 shows the bootstrap samples for SceRadiBoat sightings
generated for a single replication of the bootgsigp test experiment. The monthly

bootstrap U-Boat sightings are totaled in the Figloist column.
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Table 5.14 Bootstrap U-Boat Sightings — Scenario 2

U-Boat Sightings
Trial | Month1 | Month2| Month3 Month4 Month®% Month|6 abt
1 81 7 52 60 98 52 350
2 98 98 21 98 81 98 494
3 98 81 81 21 60 7 348
4 98 7 52 52 60 52 321
5 81 52 52 52 60 60 357
6 81 81 98 52 7 52 371
7 60 98 98 21 7 21 305
8 7 52 98 81 21 98 357
9 52 52 52 52 21 98 327
10 60 98 60 52 81 60 411
11 81 81 21 21 52 98 354
12 98 60 21 52 52 21 304
13 60 7 81 52 21 52 273
14 7 52 60 52 21 52 244
15 52 81 98 21 81 81 414
16 7 81 21 60 81 52 302
17 98 52 7 21 21 21 220
18 60 98 98 21 7 60 344
19 52 60 21 81 81 98 393
20 7 81 98 21 81 21 309

Table 5.15 summarizes the sign test classificationthe paired data (XY;) for
Scenario 2 U-Boat sightings, whereiXthei™ bootstrap U-Boat sightings total angiy
the U-Boat sightings total from th® simulation iteration from Table 4.10. The sigstte

statisticT and number of non-tied painsare displayed as well.
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Table 5.15 Sign Test Calculations — U-Boat Siglgjr§cenario 2
Observation 1 2 3 4 5 6 7 8 9 10

Sign - - - - — - + - + -
Observation 11 12 13 14 15 16 17 18 19 20
Sign — + + + — + + + — +

T 9

n 20

For n =20, R(<5) = 0.0207 and P¢ 14) = 0.0207 defining an overall (1o =
0.9586. Since 5 ¥ =9 < 14, there is insufficient evidence to rejdgt There is no
compelling evidence to suggest the simulation ca¢gaithfully represent the real-world

system with respect to Scenario 2 U-Boat sightinfise resulting p-value is 0.4119.

The results for the entire experiment are summarnizd able 5.16. Of the 20
sign test trials, the p-values ranged in value fb@58 to 0.412. Under the rejection

criteria, the null hypothesis was not rejectedrig af the 20 trials.
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Table 5.16 Summary of 20 Bootstrap ExperimentsSfmgnario 2 U-Boat Sightings

Comparison Classification
Trial | 1| 2| 3| 4| 5| 6/ 7/ 8§ 9 10 11 1 13 14 15 a6 |17 (1B | 20| T| n vgﬂje
1| = = =] =| = ol H 4 4 = - + + + 4 + + = L t P0 241
21+ | = =| =| +| = + +H +H = + — +H + - 4 T + + - 9 20 241
3| = | =| = +#| +| + + A 4H - < H A - . E F F i t 10 R0 124
4 —| +| —| +| 4| +| + + o+ — + + - 4 + B 1 + + 12 20 321
51 | +| +| +| =| =| + + + +| - - 4 A + 4 +  + F - 11 20 522
6|+ | —| = +| | +| + - +H + - +H H A . 1 1 H b o] P0 321
71 -1 +| +| + + = - 4 + + - A — B + + o+ o+ + 10 RO 124
8| + - - +| o+ o+ +H O+ + - - - A — + o+ |- + 11 R0 527
9| —| —| +| + + B I o R L I = 1 L F 13 20 38O
10| —| +| —| +| —| + + +H +H + + + — + . E - t t 12 R0 132
11| + | +| +| —| +| +| —| + + + + +H - — - - 1 + - - 11 PO 252
12 +| +| | ] = +] o+ +H = -+ A - . 4 1 + - l- 12 PO 132
13| —| | +| -] - 4 4 4 4 — + + 4 + + F +- t I+ 10 [19 323
14| —| —| —| +| - H 4 H o+ — +H + + + 4 + + + + 12 R0 132
15 —=| =| +| +| = =| 4 H H + - - + - 4 + - t - H 9 pO0 124
16| —| =| =| = + + +H H H + — +H - E g F L t - ~ RO  3@.]
17| + | +| = +| | -| -/ 4 O + + +H + . 4 + + F - - 10 [19 323
18| —| +| - —| o+ o+ H 4+ B - + . + 1 + F t - 11 PO 252
19| —| =| +| = + = 4 H H + - + - + 1 F - - 10 RO 412
20| = | +| +| = +| = 4 +H H - + - + - + q F F - t 11 19 180

Table 5.17 shows the bootstrap samples of SceBddidBoat kills generated for a
single replication of the bootstrap/sign test ekpent. The monthly bootstrap U-Boat

kills are totaled in the right-most column.
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Table 5.17 Bootstrap U-Boat Kills — Scenario 2

U-Boat Kills
Trial | Month1 | Month2| Month3 Month4 Month®% Month|6 abt
1 4 4 1 2 1 13 25
2 4 13 1 13 5 2 38
3 4 4 1 5 7 2 23
4 1 2 7 5 2 13 30
5 2 7 1 1 4 1 16
6 7 1 5 1 2 5 21
7 2 4 1 5 1 13 26
8 1 5 1 5 7 4 23
9 13 5 5 7 5 7 42
10 13 13 5 1 5 5 42
11 4 1 1 2 1 2 11
12 1 7 1 1 1 2 13
13 13 5 13 1 2 1 35
14 13 4 2 5 2 1 27
15 2 7 13 4 13 13 52
16 4 1 5 13 13 1 37
17 13 2 13 13 1 1 43
18 4 7 13 5 1 7 37
19 4 4 5 7 2 7 29
20 5 7 7 7 7 13 46

Table 5.18 summarizes the sign test classificationthe paired data (XY;) for
Scenario 2 U-Boat kills, where; 36 thei™ bootstrap U-Boat kills total and; ¥ the
U-Boat kills total from theé™ simulation iteration from Table 4.11. The sigsttstatistic

T and number of non-tied painsare displayed as well.
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Table 5.18 Sign Test Calculations — U-Boat KillseBario 2

Observation 1 2 3 4 5 6 7 8 9 10

Sign + — + 0 + + + + — —

Observation 11 12 13 14 15 16 17 18 19 20

Sign + + - 0 - 0 - — + -
T 9
n 17

Forn =17, R(<4) = 0.0245 and P¢ 12) = 0.0245 defining an overall (1o =
0.9510. Since 4 ¥ =9 < 12, there is insufficient evidence to rejdgt There is no
compelling evidence to suggest the simulation ca¢gaithfully represent the real-world

system with respect to Scenario 2 U-Boat kills.e Tlsulting p-value is 0.3145.

The results for the entire experiment are summdrnizd able 5.19. Of the 20
sign test trials, the p-values ranged in value fb@b8 to 0.5. Under the rejection

criteria, the null hypothesis was not rejectedrig af the 20 trials.
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Table 5.19 Summary of 20 Bootstrap ExperimentsSignario 2 U-Boat Kills

Comparison Classification
Trial | 1| 2| 3| 4/ 5| 6|/ 7/ 8 9 10 11 1p 213 14 15 (6 |17 |18 | 20| T n nge
1]+ =| + +| +| +| + H | + + - 0o 4 o + + + +t 9 17 631
21 — | +| = - = 4+ + +q + — + - +H - R B F D 0] 8 (18 @.40
3| = = =] = = =l 4 4 4 +H 94 4 H 4 1 1 - o S 6 RO 8.05
41 — | = +| o +| = + + +H - + 0 + +H + + R L - 9 18 (@40
5| —| = = =| +| +| = + 4+ + — - - - E 4 L - ~ 7 PO Q.13
6| —| = =| =| =| 4 o H d + + + - - R 1 L L - 0 6 (18 0.11
71 = =| =| O +| +| + + A +H o+ 4 0 4 1 + H b - 10 18 402
8| — | =| +| +| = +| +| + + - + - — — . + 4 1 S - 10 20 124
9| — | +| = Of = +| + + +H + - + — + - + 4 o 11 19 801
10 = | =| +| +| =| = + + 4 + — + +H - a 1 L v- i+ - 10 PO 41
11| = | =| = =| = + + +H 4 —| - +H - q L L t - + 7 M9 80.1
12 = | =| +| =| = - +H H 4 + + - - - g + L - H 8 PO 5Q@.7
13| - —=| —-| + + o+ o+ A+ B - — . 4 + + - t - 9 PO 124
14| + | =| =| = + o+ - 4 0 + - q + q + D - - - 8 16 004
15| —=( 0| O —| — + + H 4 + - H 4 B 1 r t - = i 9 [18 004
16| + | —=| = =| —=| + + + 4 — + + - + B 4 + + L - 10 PO 41
170 = | = +| =| +| +| + 0o 4 - +H 4 A - 4 E - - = t+ 9 (9 005
18| — | +| = —=| —=| +| + +H H + - + +H - 4 + + - +- - 10 RO 41
19| - | —-| - - - H H 4 H 4 H H A o 1+ T t - 10 RO 41@
20 + | = o +| —=| | + 4 H + + + + = + + —+ + - - 10 {19 32a.

Both sign test experiments indicate the simulaisorepresentative of historical
combat operations for Scenario 2, since the nyibkiyesis was not rejected in 20 trials
for either MOE. Though the original validationtteowed a statistical difference in the
number of U-Boat sightings, the results of the $&gt may indicate the simulation was a
better model than the single original test indidat&he monthly mean test demonstrated
100% overlap between the historic and simulationfidence intervals, though lacking in
overall confidence. The conclusions drawn fromtibetstrap/sign test methodology
provide stronger indication than either of the pyas tests for accepting the model as

valid with respect to the MOEs.
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5.3.4 Validation Conclusions

In the first validation analysis, a traditionaltgttical analysis was made between
the overall MOE totals of the simulation and thelwworld operations. These results
varied by MOE. Using the traditional t-test, valihn analysis provided a single
pass/fail determination for each MOE. Half of #iretests made showed statistical
difference between the simulation and historic dathough the practical differences
were essentially negligible. Though the validatitstermination was favorable, the test
assumed the historic outcome represented the niedinsoch outcomes — a possibly

risky assumption.

In the second validation analysis, an attempt to gight into the simulation’s
performance relative to the stochastic nature @féal-world process was made. The
simulation appeared to perform exceedingly wellisgjahe real-world data in each
experiment. However, due to the joint confidenibentima discussed previously, little

insight could be made with practical statisticatiodence.

The proposed bootstrap/sign test validation metloaygprovides more
information than the single pass/fail t-test of tinet method and more statistical
confidence than the confidence interval comparfahe second method. The sortie
hour tests produced null hypothesis rejection o&tib% for Scenario 1 and 5% for
Scenario 2. The remaining MOEs for Scenario 1 peced a null hypothesis rejection
rate of 15% for U-Boat sightings and 25% for U-Bhitls. Scenario 2 produced a null

hypothesis rejection rate of 0% for both MOEs.

174



Ultimately, the validation determination rests witie decision maker, who takes
risk, practical differences, and other associatesiscinto account. As an interesting
example for demonstrating validation techniques,tiodel is sufficiently valid, and its
success as an experimental platform has been déateasand well documented in
[Champagneet al, 2003], [Champagne and Hill, 2003], [Champagn®320[Carl,

2003], [Carl,et al, 2003], and [Hill,et al, 2003a].

5.4 Contributions

The proposed bootstrap/sign test methodology gewsra the traditional model
validation methods. Using the historic data amgles sample from the distribution
underlying the real-world system, bootstrap sampieie generated and tested against
the simulation data using the sign test. Multiigplications were made to give an
indication of how well the simulation data compatedhe bootstrap data sets by
providing more than a single pass/fail. Instehd,multiple replications provide a rate of
pass/fail that does not suffer the same analytidamma found in the second method
demonstrated. These tests, therefore, provid@agsr indication of the extent to which
the simulation data represents the real-world systen the traditional MOE validation

using the t-test.
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VI. Contributions and Avenues for Future Research

This research was not intended to advocate ageedbaodeling. Rather, this
research objectively investigates agent-based mddetombat simulation applications.
This research had two major objectives with respeeagent-based combat modeling.
The first was to demonstrate the applicabilityled igent-based paradigm on the
modeling of real-world combat scenarios. This imgd the creation of an agent-based
combat model that conformed to the concepts oftagesed systems found in the vast
majority of the literature and validated againsubstantial real-world combat operation.
The second objective was to develop a framewokuidiin which the validation of agent-
based combat scenarios could be tested. Thisahsyoihmarizes the research, highlights
the original contributions, and identifies possialeenues for further research. A detailed
discussion of data and results accompanies themetgon of methodologies and

analyses in Chapter IV and Chapter V.

6.1 Contributions

Chapter | defined four principal research areasipport of the objectives. The

contributions made by this research are presentdteicontext of these areas.

6.1.1 Establishing the Background and Supporting Work

The state-of-the-art in agent-based combat sinmrlatias established through a
comprehensive review of the literature. The litera review identified complementary
agent-based modeling in the fields of Al, artifidite, and heuristic optimization.

Additionally, the literature review establishedtttize majority of agent-based research
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diverged from combat modeling by concentrating ooperative agents. Through
identification of the strengths inherent in theridational fields, a link was established

between agent-based combat simulation and humavioeimodeling.

Agent-based combat modeling is in its infancy, ahde the literature suggests
agent-based methods hold promise to gain insightstihe effects of human behavior on
the outcome of combat, deficiencies exist in bbthdgent-based approach and in the
scope of combat operations addressed. More wargdded to establish the viability of

agent-based models for combat analysis.

6.1.2 Extend Agent-Based Combat Simulations to the Missionelvel

Within the context of this research effort, an agsased combat simulation of the
Allied offensive search for U-Boats in the Bay a$&y during WW |l was researched,
defined, and built. The simulation models contimsicombat over (2 distinct) six
months of operations. This presents two demonstiamntributions. First, agent-based
simulations were extended to the mission-levetlierfirst time. Second, agent-based

simulations were shown applicable to real-world batscenarios.

An additional contribution demonstrated in the tm¢y of the Bay of Biscay
agent-based simulation is the development of a maeibgy whereby historical combat
is encapsulated into an agent-based model. Thaajewent process in Chapter 1V
stressed several areas necessary for establistargedibility of agent-based combat
simulation results, particularly: 1) determininglgrarameterizing the underlying agent

behaviors; 2) researching the model parameterizatiequired for historical accuracy;
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and 3) quantifying the sufficiency of the model egamt behavior with respect to the

historical record.

Finally, the offensive search scenario was decoegts provide a methodology
for extending the Bay of Biscay scenario to otpesssibly more relevant, scenarios.
These applications are quite varied and encompassiéary, law enforcement, treaty

verification, and homeland security.

6.1.3 Develop Validation Methods for Agent-Based Combat Simuliains

Several contributions were made in the area oftagased model verification and
validation. Prior to this effort, the V&V literate lacked a taxonomy that included agent-
based methods. This research developed a V&V targrbased on technique

functionality and included agent-based simulatiahdation methods.

In showing the veracity of the Bay of Biscay agbased simulation, additional
contributions are made to simulation V&V. Primgributput analysis techniques were

extended to incorporate the validation of the emetrdpehavior of the agents.

Finally, a novel statistical validation methodologgs developed to determine
model veracity with respect to the stochastic pseaenderlying the real-world combat
operations. The technique combines two nonparaethniques, the bootstrapping
and sign test, to provide more information than axlable through more traditional

methods such as the t-test.
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6.1.4 Demonstration of Methods via Known Use-Case

Several practical contributions were made throinghpresentation of this
research. First, a well-accepted modeling and Isitiom process was demonstrated in
the development of the Bay of Biscay model. Secth@luse of techniques classified in
the V&V taxonomy, presented in Chapter lll, was destrated in Chapter IV to

establish several levels of validation for the datian.

6.2 Future Research

The contributions of this research effort immediateiggest several promising

areas for follow-on research. Some of these atl®ed below.

6.2.1 Additional Agent Behaviors

In building the Bay of Biscay agent-based simulatithe emphasis was on
showing applicability against the real-world histasutcome. Agent behavior was not
addressed beyond reproducing known behavior aswEried in the historic accounts.

Thus far, then, the behavioral aspects of agergebasnulation have not been explored.

Future research would extend this research inta\netral realms. For example,
information-based decision making could be explasiadouting choices, submergence
policy, search zone selection, and search patypm tThese decisions could factor in
both time and location for various contact typeghting, attacks, and Kills).
Additionally, behavioral focused agent-based corsbatlation could provide additional

avenues into the development of tactics, doctong@olicy.
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Though some aspects of adaptation were explorfRrice, 2003; Hillet al,

2003a], adaptive agent routing and search is gpexploration.

6.2.2 Modern Scenario Extensions

Chapter IV presented a methodology for extendiegniodeled offensive search
scenario to applications that are more relevamadern concerns. There is a great
opportunity to explore these extensions throughbdel development and V&V

approaches demonstrated in Chapter IV.
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Appendix A. Bootstrap Results for Simulation MOEs

The following tables contain the bootstrap samplesluced for the analysis in
Chapter V. The MOEs are presented in the same asdihe analyses within the body of

this text.

A.1 Scenario 1 Sortie Hours

Table A.1 Bootstrap Samples, Replication 1, Scernhi$ortie Hours

Trial Month 1 Month 2 Month 3 Month 4 Month § Month 6 tab
1 3,400 3,400 4,100 4,600 4,100 3,130 22,730
2 3,400 3,130 4,100 3,130 4,400 4,600 22,760
3 3,400 3,400 4,100 4,400 4,600 4,600 24,500
4 4,100 4,600 4,600 4,400 4,600 3,130 25,430
5 4,600 4,600 4,100 4,100 3,400 4,100 24,900
6 4,600 4,100 4,400 4,100 4,600 4,400 26,200
7 4,600 3,400 4,100 4,400 4,100 3,130 23,730
8 4,100 4,400 4,100 4,400 4,600 3,400 25,000
9 3,130 4,400 4,400 4,600 4,400 4,600 25,530

10 3,130 3,130 4,400 4,100 4,400 4,400 23,560
11 3,400 4,100 4,100 4,600 4,100 4,600 24,900
12 4,100 4,600 4,100 4,100 4,100 4,600 25,600
13 3,130 4,400 3,130 4,100 4,600 4,100 23,460
14 3,130 3,400 4,600 4,400 4,600 4,100 24,230
15 4,600 4,600 3,130 3,400 3,130 3,130 21,990
16 3,400 4,100 4,400 3,130 3,130 4,100 22,260
17 3,130 4,600 3,130 3,130 4,100 4,100 22,190
18 3,400 4,600 3,130 4,400 4,100 4,600 24,230
19 3,400 3,400 4,400 4,600 4,600 4,600 25,000
20 4,400 4,600 4,600 4,600 4,600 3,130 25,930
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Table A.2 Bootstrap Samples, Replication 2, Scerhi$ortie Hours

Trial Month 1 Month 2 Month 3 Month 4 Month § Month 6 tab
1 3,130 4,100 4,600 4,600 3,130 4,100, 23,660
2 4,400 4,100 4,400 4,400 4,400 3,130 24,830
3 4,600 4,600 4,600 4,600 4,400 4,100{ 26,900
4 3,130 3,400 3,130 3,130 3,130 3,400 19,320
5 4,600 3,130 3,130 4,600 4,600 4,100{ 24,160
6 4,400 4,600 4,100 4,400 3,130 4,100 24,730
7 4,100 3,400 4,100 4,100 3,130 4,400, 23,230
8 4,400 3,130 3,130 3,130 4,600 4,400{ 22,790
9 4,100 3,130 3,400 4,600 4,600 3,130 22,960

10 3,130 3,400 4,600 4,600 4,600 4,600{ 24,930
11 4,400 3,130 4,600 4,400 3,400 4,600f 24,530
12 3,130 4,600 4,600 4,100 4,600 3,130 24,160
13 3,400 4,400 4,100 3,130 3,400 4,600{ 23,030
14 3,130 4,400 3,130 4,400 4,100 4,100 23,260
15 3,400 4,400 4,600 3,130 4,400 4,600f 24,530
16 3,130 4,600 4,400 3,130 4,600 3,130 22,990
17 3,130 4,400 4,100 3,130 4,600 3,130 22,490
18 4,600 3,130 4,600 4,600 4,100 3,400 24,430
19 4,100 4,100 3,400 4,600 4,400 4,600, 25,200
20 4,400 3,130 3,130 4,100 3,130 4,600f 22,490
Table A.3 Bootstrap Samples, Replication 3, Scerhi$ortie Hours

Trial Month 1 Month 2 Month 3 Month 4 Month § Month 6 tab
1 4,600 4,600 3,130 3,130 4,100 4,600f 24,160
2 3,400 4,100 3,130 4,600 4,400 4,100{ 23,730
3 4,100 4,400 3,130 4,600 4,600 4,600f 25,430
4 3,400 4,400 4,600 3,400 3,130 4,600f 23,530
5 4,400 4,600 4,600 4,400 4,600 4,400{ 27,000
6 4,100 4,400 4,600 4,400 4,600 4,600{ 26,700
7 4,600 4,600 4,400 3,130 4,400 3,400 24,530
8 3,400 4,600 3,400 4,600 4,600 4,600, 25,200
9 3,130 4,100 4,400 4,400 3,130 4,600f 23,760

10 4,600 4,100 4,100 3,400 3,400 3,130 22,730
11 4,400 3,130 4,600 4,600 4,100 3,130 23,960
12 4,100 4,100 4,100 4,600 4,600 4,600f 26,100
13 4,100 4,600 4,600 3,130 4,400 4,100{ 24,930
14 4,400 4,600 4,600 4,600 4,400 3,400 26,000
15 3,130 4,100 4,600 4,100 4,600 4,600f 25,130
16 4,600 4,600 4,400 4,100 4,100 4,600, 26,400
17 4,400 4,400 4,400 4,600 4,100 4,600{ 26,500
18 3,130 4,600 3,130 4,600 3,130 3,400 21,990
19 4,100 4,600 4,600 4,400 3,130 3,400 24,230
20 3,400 4,100 4,100 4,600 4,100 4,400{ 24,700
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Table A.4 Bootstrap Samples, Replication 4, Scerhi$ortie Hours

Trial Month 1 Month 2 Month 3 Month 4 Month § Month 6 tab
1 4,600 4,600 4,100 4,400 4,600 3,400 25,700
2 4,400 4,400 4,600 4,600 4,400 4,400{ 26,800
3 3,130 4,600 3,400 3,130 3,130 3,400 20,790
4 4,600 4,600 3,130 3,400 3,130 3,400 22,260
5 3,400 4,100 4,600 4,100 3,400 3,130 22,730
6 3,130 4,400 3,400 4,100 3,400 4,400{ 22,830
7 4,400 4,400 4,600 4,600 3,400 4,600, 26,000
8 4,100 4,400 3,400 3,400 4,600 4,600, 24,500
9 3,400 4,100 4,100 4,400 4,100 3,130 23,230

10 4,400 4,600 3,130 4,600 4,100 4,600f 25,430
11 3,400 4,600 4,400 4,600 4,100 3,130 24,230
12 4,400 4,600 4,100 4,400 3,130 4,400{ 25,030
13 4,600 3,400 3,130 4,100 4,100 4,400{ 23,730
14 4,600 3,400 4,100 4,600 3,400 4,400{ 24,500
15 4,600 4,600 4,600 4,100 3,130 4,600f 25,630
16 4,600 4,100 4,100 4,600 3,130 4,600f 25,130
17 4,100 4,600 4,100 4,400 4,400 4,600, 26,200
18 3,130 4,100 4,400 4,400 3,400 4,600{ 24,030
19 3,130 3,400 3,400 4,600 4,600 4,600f 23,730
20 4,400 4,400 4,600 3,400 3,130 4,600f 24,530
Table A.5 Bootstrap Samples, Replication 5, Scerhi$ortie Hours

Trial Month 1 Month 2 Month 3 Month 4 Month § Month 6 tab
1 3,400 4,400 4,100 4,400 4,400 3,130 23,830
2 3,130 4,100 3,400 4,100 4,600 4,600{ 23,930
3 4,600 3,400 3,130 4,400 4,100 4,100{ 23,730
4 4,100 3,400 3,400 4,100 4,600 3,400 23,000
5 4,400 3,400 4,600 3,130 4,600 4,600{ 24,730
6 4,400 4,400 4,600 4,600 3,130 4,100 25,230
7 3,400 4,600 4,600 3,400 4,100 4,100 24,200
8 3,130 3,130 3,130 3,400 4,600 4,600f 21,990
9 4,100 4,600 3,130 4,400 3,130 4,600{ 23,960

10 4,400 4,400 4,600 3,130 4,100 4,100 24,730
11 3,400 3,400 4,400 4,600 4,400 3,400 23,600
12 4,400 3,130 4,100 4,400 4,400 4,600{ 25,030
13 4,600 4,600 4,600 3,130 4,100 4,600f 25,630
14 3,400 4,600 4,100 4,600 4,400 4,600{ 25,700
15 4,600 3,400 4,400 4,600 4,400 4,600{ 26,000
16 3,130 3,130 4,600 3,400 4,100 3,400 21,760
17 4,600 4,100 4,100 4,600 4,600 4,600f 26,600
18 4,600 4,100 4,600 3,400 3,400 4,100 24,200
19 4,400 4,600 4,600 4,600 4,100 4,600, 26,900
20 4,600 4,600 4,600 4,600 4,400 4,600{ 27,400
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Table A.6 Bootstrap Samples, Replication 6, Scerhi$ortie Hours

Trial Month 1 Month 2 Month 3 Month 4 Month § Month 6  ofal
1 4,600 3,400 4,100 4,100 3,130 4,600f 23,930
2 3,400 4,100 3,400 3,400 3,400 4,600f 22,300
3 4,100 3,400 3,130 4,400 4,600 4,100{ 23,730
4 4,600 4,100 4,600 4,600 4,600 3,400 25,900
5 3,130 4,600 4,600 4,600 3,400 4,600{ 24,930
6 3,400 4,600 4,400 4,600 3,130 4,600f 24,730
7 4,600 3,130 4,100 4,600 4,100 4,100{ 24,630
8 3,130 4,100 4,600 4,400 4,600 4,400{ 25,230
9 4,600 4,600 4,600 4,600 3,400 4,100 25,900
10 4,600 4,600 3,400 4,600 3,130 4,400 24,730
11 3,400 4,100 3,400 4,400 4,600 3,130 23,030
12 4,600 4,600 4,600 3,130 4,100 4,100{ 25,130
13 4,400 4,100 4,100 4,600 4,600 4,100 25,900
14 4,600 3,400 4,600 4,100 4,400 4,100 25,200
15 4,100 4,600 3,400 4,400 4,100 3,400 24,000
16 4,400 4,600 4,600 4,400 4,600 4,600{ 27,200
17 4,100 4,400 3,130 4,100 4,100 3,400 23,230
18 3,400 4,100 4,600 4,600 3,400 4,100 24,200
19 4,100 4,600 4,400 4,600 3,130 3,400 24,230
20 4,400 4,600 4,100 4,600 4,100 3,400 25,200
Table A.7 Bootstrap Samples, Replication 7, Scerhi$ortie Hours
Trial Month 1 Month 2 Month 3 Month 4 Month § Month 6 tab
1 4,400 3,130 3,130 4,400 4,600 3,400 23,060
2 4,600 4,400 4,100 3,400 3,400 3,130 23,030
3 4,400 3,400 4,400 3,400 4,100 4,400{ 24,100
4 4,600 4,600 3,130 3,130 3,400 3,400 22,260
5 4,600 4,600 4,600 4,100 4,600 4,600f 27,100
6 3,400 4,400 4,400 4,600 4,600 4,600{ 26,000
7 3,400 4,600 4,100 4,600 4,100 4,400 25,200
8 4,600 4,400 3,400 4,600 4,600 4,100 25,700
9 3,130 3,400 4,100 3,130 4,400 4,400{ 22,560
10 4,600 4,400 3,130 4,100 4,100 4,400{ 24,730
11 4,400 3,400 4,100 4,100 4,600 4,600, 25,200
12 4,100 4,400 4,400 4,600 4,100 4,400, 26,000
13 4,600 4,400 4,600 4,400 3,130 4,100 25,230
14 4,400 3,130 3,400 4,600 4,600 4,600f 24,730
15 4,600 4,600 4,600 3,400 4,400 4,100 25,700
16 4,600 4,400 4,600 3,400 3,130 3,400 23,530
17 4,600 4,600 4,100 3,400 4,600 3,400 24,700
18 4,600 4,600 4,100 4,600 4,600 4,100{ 26,600
19 3,130 3,130 3,130 4,100 4,600 4,600f 22,690
20 4,600 4,100 3,130 4,400 3,400 3,400 23,030
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Table A.8 Bootstrap Samples, Replication 8, Scerhi$ortie Hours

Trial Month 1 Month 2 Month 3 Month 4 Month § Month 6 tab
1 4,600 4,600 3,400 4,600 4,600 4,100 25,900
2 4,600 4,600 4,600 4,600 3,400 3,130 24,930
3 3,400 3,130 4,600 4,600 3,400 4,100 23,230
4 3,130 4,100 4,600 4,400 4,600 3,130 23,960
5 4,600 4,600 4,600 4,600 3,130 4,100{ 25,630
6 3,400 4,400 4,600 3,400 4,400 3,400 23,600
7 4,400 3,400 4,100 4,400 4,400 4,600{ 25,300
8 4,600 3,130 4,100 3,130 4,100 4,600f 23,660
9 3,400 4,400 3,130 3,400 4,100 4,600{ 23,030

10 3,130 3,400 4,100 4,400 3,400 4,600{ 23,030
11 3,130 4,600 4,600 4,400 3,130 4,400 24,260
12 4,600 4,100 4,600 4,400 4,600 4,100, 26,400
13 4,600 3,130 3,400 3,400 4,100 4,100{ 22,730
14 4,600 3,400 4,100 4,100 4,400 4,400, 25,000
15 4,600 4,600 3,130 4,600 4,100 4,600f 25,630
16 3,400 4,400 4,400 3,130 4,100 3,400 22,830
17 4,100 3,400 4,600 3,400 4,100 4,100{ 23,700
18 4,400 3,130 4,100 4,600 4,400 4,400{ 25,030
19 4,600 4,400 4,100 3,400 4,400 3,400 24,300
20 4,600 3,400 4,400 4,600 4,600 4,400{ 26,000
Table A.9 Bootstrap Samples, Replication 9, Scernhi$ortie Hours

Trial Month 1 Month 2 Month 3 Month 4 Month § Month 6 tab
1 4,400 4,100 4,600 3,130 4,600 4,400 25,230
2 3,130 3,400 3,130 3,400 3,400 4,400, 20,860
3 4,600 4,100 4,600 4,600 4,600 4,600f 27,100
4 3,130 4,100 3,400 4,100 4,600 4,100{ 23,430
5 4,400 4,100 4,600 4,600 4,600 3,400 25,700
6 4,600 3,130 4,400 4,600 4,600 4,100 25,430
7 3,400 4,600 4,600 3,400 4,600 4,100{ 24,700
8 3,400 4,400 4,100 4,600 3,400 4,400{ 24,300
9 3,130 4,100 3,400 4,600 4,600 3,400 23,230

10 4,400 4,400 4,600 3,130 3,400 4,400{ 24,330
11 4,600 4,400 4,600 3,400 4,100 3,400 24,500
12 3,130 3,130 3,130 3,400 4,600 3,400 20,790
13 4,600 4,600 4,600 3,130 4,100 4,600f 25,630
14 4,600 4,100 4,600 4,100 4,400 4,600{ 26,400
15 3,130 4,100 3,400 3,130 3,130 4,100{ 20,990
16 3,130 4,100 4,600 4,600 4,400 4,100{ 24,930
17 3,400 3,130 4,400 4,600 4,100 3,130 22,760
18 4,100 4,600 4,100 4,600 4,400 4,600, 26,400
19 4,100 4,100 4,600 4,600 4,100 4,400{ 25,900
20 4,100 3,400 4,400 3,400 4,600 4,100, 24,000
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Table A.10 Bootstrap Samples, Replication 10, SeerdaSortie Hours

Trial Month 1 Month 2 Month 3 Month 4 Month § Month 6 tab
1 3,400 4,400 3,130 4,100 4,100 4,600f 23,730
2 4,600 4,100 4,400 4,400 4,400 4,100{ 26,000
3 4,600 3,130 3,400 3,400 3,400 4,600f 22,530
4 4,600 3,130 4,100 3,130 4,600 4,600{ 24,160
5 3,130 4,400 3,400 4,400 4,100 3,400 22,830
6 4,400 4,600 4,400 4,600 3,400 3,400 24,800
7 3,400 3,400 4,600 3,130 4,100 4,100{ 22,730
8 3,130 4,600 4,600 3,400 4,600 4,100{ 24,430
9 3,130 4,600 4,600 4,600 3,130 4,100{ 24,160

10 4,600 4,400 3,130 4,100 3,130 3,400 22,760
11 4,600 4,600 4,600 4,400 3,400 4,100 25,700
12 4,600 4,600 4,100 3,130 4,100 4,100{ 24,630
13 4,100 3,130 4,100 4,400 4,400 4,100 24,230
14 4,400 3,400 3,400 3,130 4,600 4,100{ 23,030
15 4,600 4,600 4,100 4,600 3,130 4,100{ 25,130
16 3,400 4,600 4,600 4,400 4,600 3,130 24,730
17 3,130 4,400 4,600 3,130 4,600 3,400 23,260
18 4,600 3,400 4,100 4,400 3,130 4,600, 24,230
19 4,600 3,130 3,130 4,400 3,400 3,130 21,790
20 4,600 4,600 4,600 3,400 4,100 3,400 24,700
Table A.11 Bootstrap Samples, Replication 11, SeerdaSortie Hours

Trial Month 1 Month 2 Month 3 Month 4 Month § Month 6 tab
1 3,130 3,400 4,100 4,600 3,400 4,600f 23,230
2 4,600 4,100 4,600 4,100 4,600 4,600f 26,600
3 4,400 3,130 3,400 4,600 4,400 4,400{ 24,330
4 4,400 4,400 4,100 3,130 3,130 4,600f 23,760
5 4,400 4,100 4,600 3,130 4,600 3,400 24,230
6 4,400 3,400 4,100 3,400 4,100 4,100{ 23,500
7 4,600 4,600 4,600 4,600 4,400 3,130 25,930
8 4,600 4,100 3,400 4,400 4,600 3,130 24,230
9 3,400 4,400 3,400 4,600 4,400 4,600{ 24,800

10 4,600 3,400 3,130 4,400 3,400 4,600f 23,530
11 3,130 3,400 3,400 4,600 4,600 3,400 22,530
12 4,600 3,130 4,600 3,130 3,400 4,400 23,260
13 4,100 4,100 4,600 3,130 4,100 3,400 23,430
14 4,600 4,400 4,400 3,130 4,400 4,400, 25,330
15 4,600 4,600 4,400 3,400 3,400 3,400 23,800
16 3,130 4,400 3,400 4,600 3,400 3,130 22,060
17 3,130 4,600 3,400 3,130 4,600 3,130 21,990
18 3,130 3,400 4,600 3,130 3,130 4,600f 21,990
19 4,600 4,100 4,600 4,400 3,400 3,400 24,500
20 4,100 4,600 4,100 4,600 4,100 3,130 24,630
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Table A.12 Bootstrap Samples, Replication 12, SterdaSortie Hours

Trial Month 1 Month 2 Month 3 Month 4 Month § Month 6 tab
1 3,130 4,600 3,400 4,600 4,600 4,600{ 24,930
2 4,100 3,400 4,600 3,130 4,100 4,600{ 23,930
3 4,400 3,130 3,400 4,400 3,400 4,100{ 22,830
4 3,130 4,600 4,600 4,100 3,400 3,400 23,230
5 4,100 4,600 4,600 4,100 4,400 3,400 25,200
6 3,130 4,600 3,400 3,130 4,400 3,400 22,060
7 4,400 4,400 3,130 4,600 4,400 4,600f 25,530
8 4,400 4,600 4,400 4,600 4,600 4,400{ 27,000
9 4,600 3,400 4,400 4,600 4,600 3,400 25,000

10 4,100 4,600 4,600 4,600 4,100 4,600f 26,600
11 4,400 4,600 3,130 4,400 3,400 4,100{ 24,030
12 4,100 4,400 4,600 3,400 4,100 3,130 23,730
13 3,400 3,130 3,400 4,100 4,600 4,100{ 22,730
14 3,130 3,400 4,600 4,100 4,100 4,600{ 23,930
15 4,600 3,130 4,100 3,400 4,400 3,400 23,030
16 4,600 3,400 4,400 3,400 4,400 4,100 24,300
17 4,600 4,400 4,600 3,400 4,100 4,600, 25,700
18 4,100 4,600 4,600 3,130 4,100 4,600f 25,130
19 3,130 4,100 4,100 3,400 4,600 4,400{ 23,730
20 3,400 4,400 3,130 4,600 4,400 3,130 23,060
Table A.13 Bootstrap Samples, Replication 13, SterdaSortie Hours

Trial Month 1 Month 2 Month 3 Month 4 Month § Month 6 tab
1 4,600 3,130 3,130 4,600 4,600 4,600{ 24,660
2 4,400 4,600 3,130 3,130 4,100 3,400 22,760
3 4,400 3,400 4,100 3,400 3,400 3,130 21,830
4 4,600 4,600 3,130 4,100 4,600 4,400{ 25,430
5 4,600 4,400 4,600 4,400 4,400 4,400{ 26,800
6 4,600 3,130 3,130 4,600 4,600 3,130 23,190
7 4,600 4,400 4,400 4,600 3,130 3,400 24,530
8 4,400 4,600 4,400 3,130 4,600 4,100 25,230
9 4,600 3,400 4,400 4,400 4,400 4,600{ 25,800

10 3,400 4,600 4,600 4,600 4,400 4,600, 26,200
11 4,600 3,130 4,600 4,400 3,400 4,600{ 24,730
12 4,400 3,400 4,600 4,400 4,600 4,100{ 25,500
13 4,100 4,400 3,400 4,100 4,100 3,130 23,230
14 4,100 3,130 3,400 3,130 3,400 4,100 21,260
15 4,400 4,100 4,100 3,400 4,600 4,600, 25,200
16 4,100 3,130 4,600 4,400 4,400 4,600{ 25,230
17 3,130 4,400 4,600 4,400 4,100 4,600{ 25,230
18 4,600 4,100 4,600 4,600 3,130 4,400 25,430
19 4,100 4,400 4,600 3,130 4,100 3,130 23,460
20 3,130 3,130 3,400 4,600 4,100 3,400 21,760
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Table A.14 Bootstrap Samples, Replication 14, SterdaSortie Hours

Trial Month 1 Month 2 Month 3 Month 4 Month § Month 6 tab
1 3,130 4,400 4,100 4,600 4,100 4,400{ 24,730
2 4,100 4,600 4,100 4,400 4,600 4,400, 26,200
3 4,400 4,100 4,600 3,400 4,600 4,400 25,500
4 3,130 4,600 4,400 4,100 4,400 3,400 24,030
5 4,600 4,400 4,600 4,100 4,400 4,100, 26,200
6 3,400 4,600 4,400 4,400 3,130 3,400 23,330
7 3,130 3,400 4,400 4,100 3,130 4,400{ 22,560
8 4,600 3,130 4,100 4,400 3,400 4,400{ 24,030
9 3,130 4,100 3,400 4,400 3,400 4,400{ 22,830

10 4,400 4,100 4,100 3,400 4,100 4,600{ 24,700
11 3,400 3,400 4,600 3,400 4,600 3,130 22,530
12 3,130 4,600 4,600 4,100 3,400 4,100{ 23,930
13 4,600 4,100 3,130 4,600 4,400 4,600f 25,430
14 4,600 4,600 3,400 3,130 4,600 4,600{ 24,930
15 4,600 3,130 3,400 3,400 4,100 4,600f 23,230
16 3,400 4,600 3,400 4,600 3,130 4,600f 23,730
17 3,400 3,130 4,400 3,400 3,400 4,100{ 21,830
18 4,600 3,130 4,600 3,130 4,600 4,600, 24,660
19 4,600 4,100 3,400 4,600 3,130 4,100{ 23,930
20 3,400 4,600 4,600 3,400 4,600 3,400 24,000
Table A.15 Bootstrap Samples, Replication 15, SterdaSortie Hours

Trial Month 1 Month 2 Month 3 Month 4 Month § Month 6 tab
1 3,130 4,600 4,100 4,600 3,130 4,600{ 24,160
2 4,100 4,600 4,400 4,600 4,400 3,400 25,500
3 3,400 4,400 3,130 4,400 4,600 4,600f 24,530
4 3,130 4,600 3,400 4,400 4,100 4,400{ 24,030
5 4,600 4,600 4,400 4,600 4,600 4,600{ 27,400
6 3,400 3,130 4,600 4,600 4,100 4,100{ 23,930
7 4,100 4,400 4,600 4,600 4,400 4,400{ 26,500
8 3,400 4,400 4,100 4,600 4,100 4,100 24,700
9 4,600 4,600 4,600 3,400 4,600 4,100 25,900

10 3,400 3,130 4,100 3,130 3,130 4,600f 21,490
11 4,100 3,400 4,100 4,600 4,100 4,600, 24,900
12 4,100 4,600 4,400 4,600 4,400 4,100 26,200
13 4,600 4,600 4,600 4,100 4,100 4,600f 26,600
14 3,130 4,100 3,400 4,600 3,130 4,100{ 22,460
15 3,400 3,400 4,100 4,600 4,600 3,400 23,500
16 4,600 4,100 3,400 3,130 4,600 4,400 24,230
17 4,400 3,130 3,130 4,400 3,130 4,100{ 22,290
18 4,600 3,130 4,400 4,400 3,130 3,130 22,790
19 4,400 3,400 3,400 4,600 4,100 4,600, 24,500
20 4,100 4,600 4,600 3,130 4,100 3,400 23,930
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Table A.16 Bootstrap Samples, Replication 16, SterdaSortie Hours

Trial Month 1 Month 2 Month 3 Month 4 Month § Month 6 tab
1 4,100 4,600 4,100 3,130 4,600 4,600f 25,130
2 4,400 4,600 4,100 3,130 4,600 3,400 24,230
3 4,400 4,100 3,130 3,130 4,600 4,600{ 23,960
4 4,400 4,600 3,130 4,100 4,600 3,400 24,230
5 4,400 3,130 4,400 3,130 4,600 4,100, 23,760
6 3,400 3,130 3,130 4,400 4,600 3,400 22,060
7 4,600 4,400 3,130 4,100 4,600 4,600f 25,430
8 4,100 4,600 4,600 4,600 4,400 4,100{ 26,400
9 4,100 3,130 4,600 4,400 4,400 3,400 24,030

10 4,600 3,130 4,600 3,400 3,130 3,130 21,990
11 3,130 3,400 4,400 4,600 4,600 3,130 23,260
12 4,600 3,130 4,100 3,130 4,100 4,400 23,460
13 3,400 4,400 4,600 4,100 3,400 3,130 23,030
14 3,130 4,400 4,400 3,130 4,100 3,400 22,560
15 4,100 4,600 3,130 4,600 3,400 4,600{ 24,430
16 4,600 4,600 4,600 3,130 4,400 4,400 25,730
17 4,600 4,600 4,100 3,130 3,130 3,130 22,690
18 3,130 4,600 4,100 4,100 4,600 4,600f 25,130
19 4,100 4,600 4,600 4,600 4,400 4,100 26,400
20 3,130 4,400 4,600 4,100 4,100 3,400 23,730
Table A.17 Bootstrap Samples, Replication 17, SeerdaSortie Hours

Trial Month 1 Month 2 Month 3 Month 4 Month § Month 6 tab
1 4,400 4,600 3,130 4,600 4,100 4,600f 25,430
2 3,400 4,600 4,600 4,100 3,400 4,600, 24,700
3 3,400 4,100 3,400 4,600 4,600 4,600{ 24,700
4 4,100 3,130 4,400 3,400 4,600 4,100{ 23,730
5 4,600 3,400 4,600 4,400 4,600 4,400, 26,000
6 4,100 4,600 4,600 4,600 3,400 4,600{ 25,900
7 4,600 4,600 4,100 3,400 3,400 4,600{ 24,700
8 4,600 4,600 3,130 4,600 3,130 4,100{ 24,160
9 3,130 4,600 4,100 3,130 3,400 4,600f 22,960

10 4,600 3,400 4,400 4,100 4,100 3,400 24,000
11 4,400 3,130 3,130 4,400 4,600 4,400 24,060
12 4,600 4,600 4,600 4,100 4,600 3,130 25,630
13 3,400 4,600 4,100 4,400 3,130 4,100{ 23,730
14 4,400 4,400 3,400 3,130 4,600 4,400{ 24,330
15 3,400 4,400 4,600 4,100 4,100 3,130 23,730
16 4,600 3,130 4,600 4,600 3,400 3,130 23,460
17 4,100 3,130 4,400 4,100 4,600 4,600{ 24,930
18 4,400 4,600 4,400 4,600 3,400 4,600{ 26,000
19 4,100 3,130 3,130 3,130 3,130 4,400{ 21,020
20 3,400 4,600 4,600 3,400 3,130 3,130 22,260
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Table A.18 Bootstrap Samples, Replication 18, SterdaSortie Hours

Trial Month 1 Month 2 Month 3 Month 4 Month § Month 6 tab
1 4,400 3,400 4,100 4,600 4,100 4,600, 25,200
2 3,400 3,130 4,400 4,100 3,130 3,130 21,290
3 4,600 3,130 4,600 3,400 4,600 4,600{ 24,930
4 4,400 3,400 3,130 4,400 4,600 3,130 23,060
5 3,400 4,400 4,100 4,400 3,400 4,600{ 24,300
6 3,130 4,100 4,600 3,400 4,600 3,130 22,960
7 4,100 4,600 4,100 3,130 3,400 4,100{ 23,430
8 4,100 4,400 4,600 4,100 4,600 4,100 25,900
9 4,600 4,600 4,100 3,130 4,100 3,130 23,660

10 4,100 4,400 4,400 3,400 4,600 4,400, 25,300
11 4,100 4,600 4,100 4,600 4,600 4,600{ 26,600
12 3,400 4,600 3,400 4,100 3,130 4,400{ 23,030
13 3,130 4,600 3,130 4,100 4,600 3,130 22,690
14 4,100 4,600 3,400 4,100 4,600 4,600, 25,400
15 4,600 4,600 4,600 3,130 4,600 4,600f 26,130
16 4,100 3,130 3,400 4,600 4,600 4,400 24,230
17 4,600 4,600 3,130 4,400 4,100 4,100{ 24,930
18 4,100 3,130 4,400 3,400 4,100 4,100 23,230
19 3,130 4,600 4,400 4,600 3,130 4,100 23,960
20 3,130 4,600 3,400 3,400 3,130 4,600f 22,260
Table A.19 Bootstrap Samples, Replication 19, SeerdaSortie Hours

Trial Month 1 Month 2 Month 3 Month 4 Month § Month 6 tab
1 4,100 3,400 3,400 4,600 4,400 4,100, 24,000
2 4,100 3,400 4,600 3,400 4,100 4,600, 24,200
3 3,130 4,100 4,600 3,130 4,600 4,400, 23,960
4 3,400 3,130 3,130 4,100 4,600 3,400 21,760
5 4,600 3,130 4,100 4,600 4,400 3,130 23,960
6 4,600 3,130 3,400 4,100 4,400 3,130 22,760
7 3,130 4,400 4,600 4,600 4,400 4,100 25,230
8 3,400 4,400 4,100 3,130 4,600 4,600{ 24,230
9 3,130 3,400 4,400 4,600 3,400 4,600f 23,530

10 3,400 4,100 4,600 4,100 4,600 4,600, 25,400
11 3,400 3,130 3,400 4,600 4,100 4,100{ 22,730
12 4,400 4,400 4,600 3,130 4,400 3,130 24,060
13 3,130 4,600 4,600 3,130 4,100 3,130 22,690
14 4,600 4,400 3,400 3,400 4,600 4,600, 25,000
15 3,130 3,130 4,600 4,100 3,130 4,600f 22,690
16 4,600 4,600 3,130 4,600 4,400 4,100{ 25,430
17 3,130 4,600 3,130 4,600 3,400 3,130 21,990
18 4,600 3,400 4,600 3,400 3,130 3,130 22,260
19 4,400 4,400 3,130 4,400 4,100 4,600{ 25,030
20 4,400 3,130 3,130 4,400 4,600 4,600, 24,260
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Table A.20 Bootstrap Samples, Replication 20, SeerdaSortie Hours

Trial Month 1 Month 2 Month 3 Month 4 Month § Month 6 tab
1 3,130 4,600 3,400 3,400 4,400 3,130 22,060
2 3,130 4,600 4,600 4,600 4,600 3,400 24,930
3 3,400 3,400 4,400 3,400 4,600 4,100 23,300
4 4,600 3,130 4,600 4,600 4,400 3,130 24,460
5 4,600 3,400 4,100 4,600 4,400 4,100 25,200
6 4,400 3,130 3,400 3,400 4,100 4,600 23,030
7 3,400 3,400 4,600 4,600 4,400 3,400 23,800
8 3,130 4,100 4,600 3,400 4,400 4,600 24,230
9 4,600 3,400 3,400 4,100 4,600 4,400 24,500

10 3,130 3,400 3,400 3,400 4,400 4,100 21,830
11 4,100 4,600 4,100 4,600 4,400 4,600 26,400
12 3,130 4,400 4,600 4,600 4,100 3,130 23,960
13 4,100 4,600 4,100 4,600 3,130 3,400 23,930
14 4,600 4,400 4,600 4,600 3,400 4,600 26,200
15 4,600 3,130 3,400 4,400 3,400 3,130 22,060
16 4,600 3,400 4,400 3,400 4,100 4,400 24,300
17 3,130 4,400 4,600 4,400 4,600 4,100 25,230
18 4,600 3,130 4,400 4,600 4,600 4,600 25,930
19 4,100 3,400 4,100 3,130 3,400 3,130 21,260
20 4,400 4,600 3,400 4,400 4,400 4,600 25,800
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A.2 Scenario 2 Sortie Hours

Table A.21 Bootstrap Samples, Replication 1, ScerZaBortie Hours

Trial Month 1 Month 2 Month 3 Month 4 Month § Month 6 tab
1 5,900 5,350 7,000 5,900 7,000 7,000 38,150
2 8,000 8,700 8,700 7,000 5,900 7,000 45,300
3 5,900 5,900 4,200 4,200 7,000 8,700 35,900
4 7,000 8,000 5,900 4,200 8,000 8,700 41,800
5 8,000 4,200 8,700 5,900 5,350 4,200 36,350
6 7,000 5,900 7,000 8,000 4,200 5,900 38,000
7 7,000 7,000 7,000 7,000 4,200 7,000 39,200
8 5,350 5,350 8,700 5,350 5,900 5,350 36,000
9 4,200 5,350 7,000 8,700 5,350 5,350 35,950

10 7,000 8,000 7,000 8,700 8,700 7,000 46,400
11 8,000 5,350 8,700 7,000 8,700 5,350 43,100
12 5,350 8,700 5,900 8,000 4,200 7,000 39,150
13 8,700 8,000 5,350 8,000 5,900 4,200 40,150
14 4,200 8,700 5,350 7,000 5,900 5,900 37,050
15 8,700 8,000 5,350 5,900 4,200 8,700 40,850
16 8,700 5,350 7,000 8,700 5,900 5,350 41,000
17 8,700 5,900 4,200 5,350 8,700 8,000 40,850
18 4,200 4,200 5,350 8,700 8,700 8,700 39,850
19 5,900 7,000 7,000 5,350 8,700 5,350 39,300
20 4,200 7,000 8,000 8,700 5,350 4,200 37,450
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Table A.22 Bootstrap Samples, Replication 2, ScerZaBortie Hours

Trial Month 1 Month 2 Month 3 Month 4 Month § Month 6 tab
1 4,200 8,700 8,700 5,350 5,900 7,000 39,850
2 5,900 4,200 5,900 4,200 7,000 5,900 33,100
3 5,350 5,900 5,900 8,700 5,900 8,000 39,750
4 8,700 5,900 8,000 8,700 4,200 5,900 41,400
5 7,000 5,350 8,700 5,350 5,900 7,000 39,300
6 8,700 8,700 7,000 5,900 5,900 5,350 41,550
7 5,350 4,200 5,350 8,000 5,350 7,000 35,250
8 8,700 8,700 8,000 4,200 4,200 4,200 38,000
9 7,000 8,700 4,200 4,200 5,900 5,900 35,900

10 5,900 7,000 4,200 8,700 5,900 5,900 37,600
11 5,900 4,200 5,350 5,900 5,900 5,350 32,600
12 7,000 8,700 5,900 5,350 5,350 8,700 41,000
13 8,000 8,000 8,000 4,200 8,000 5,350 41,550
14 8,000 7,000 5,350 5,900 5,350 5,900 37,500
15 8,700 5,900 8,700 8,700 5,900 5,900 43,800
16 5,350 4,200 8,000 5,900 7,000 5,350 35,800
17 8,700 4,200 4,200 4,200 5,350 5,350 32,000
18 5,350 5,900 7,000 8,000 5,350 4,200{ 35,800
19 8,700 4,200 5,900 4,200 4,200 5,350 32,550
20 5,900 7,000 5,900 5,900 5,350 8,700 38,750
Table A.23 Bootstrap Samples, Replication 3, ScerZaBortie Hours

Trial Month 1 Month 2 Month 3 Month 4 Month § Month 6 tab
1 7,000 7,000 7,000 8,700 7,000 5,350 42,050
2 8,000 4,200 8,700 5,900 8,700 8,000 43,500
3 8,700 7,000 8,000 5,900 8,700 5,350 43,650
4 5,350 8,700 5,350 5,900 5,350 8,000 38,650
5 4,200 7,000 5,900 4,200 7,000 7,000 35,300
6 4,200 4,200 4,200 5,350 8,000 8,700 34,650
7 8,700 5,900 8,000 7,000 5,900 4,200{ 39,700
8 5,900 5,900 4,200 5,900 8,000 5,350 35,250
9 8,000 8,000 8,000 8,700 8,700 5,900 47,300

10 5,900 5,350 8,700 7,000 5,350 4,200{ 36,500
11 8,000 4,200 5,900 5,350 7,000 7,000 37,450
12 8,000 7,000 5,350 5,350 5,350 8,000 39,050
13 4,200 8,700 5,900 8,000 5,900 8,700 41,400
14 5,900 5,350 7,000 5,350 7,000 5,900 36,500
15 8,000 5,900 7,000 5,900 5,350 5,900 38,050
16 8,000 8,000 5,900 5,350 8,700 7,000 42,950
17 8,000 7,000 8,000 5,350 5,350 5,900 39,600
18 7,000 8,000 8,700 5,900 5,900 4,200{ 39,700
19 5,350 5,350 8,700 8,700 5,350 4,200{ 37,650
20 5,350 8,000 8,000 8,700 5,350 5,900 41,300
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Table A.24 Bootstrap Samples, Replication 4, ScerZaBortie Hours

Trial Month 1 Month 2 Month 3 Month 4 Month § Month 6 tab
1 8,700 5,900 4,200 5,350 8,700 8,700 41,550
2 5,900 7,000 8,000 7,000 8,000 8,000 43,900
3 8,700 5,350 5,350 5,900 5,900 8,000 39,200
4 8,700 7,000 7,000 5,350 5,350 7,000 40,400
5 8,000 8,000 5,350 5,350 7,000 5,350 39,050
6 8,700 8,000 8,700 7,000 7,000 4,200 43,600
7 5,350 5,350 8,000 5,350 8,000 5,350 37,400
8 8,000 4,200 8,000 5,350 5,350 4,200{ 35,100
9 5,350 5,350 5,350 8,700 5,350 5,350 35,450

10 5,350 4,200 7,000 8,000 8,000 8,700 41,250
11 5,900 8,000 5,350 5,350 5,350 4,200{ 34,150
12 8,700 5,900 7,000 5,350 5,350 4,200{ 36,500
13 5,350 8,700 4,200 4,200 5,350 5,900 33,700
14 5,350 4,200 7,000 7,000 5,350 7,000 35,900
15 8,000 4,200 7,000 8,700 5,900 5,900, 39,700
16 8,700 7,000 5,350 5,350 5,350 5,900, 37,650
17 4,200 4,200 5,900 5,350 4,200 5,900 29,750
18 4,200 5,900 5,350 7,000 8,000 5,900 36,350
19 5,350 8,000 5,900 5,350 8,700 5,900 39,200
20 7,000 5,900 5,900 5,350 8,000 8,000 40,150
Table A.25 Bootstrap Samples, Replication 5, ScerZaBortie Hours

Trial Month 1 Month 2 Month 3 Month 4 Month § Month 6 tab
1 8,000 8,700 4,200 8,000 5,350 5,350 39,600
2 4,200 5,350 5,350 5,350 8,700 7,000 35,950
3 5,900 8,700 5,350 5,350 5,900 4,200, 35,400
4 5,900 7,000 4,200 8,000 8,700 4,200 38,000
5 7,000 4,200 7,000 8,000 4,200 8,700 39,100
6 8,000 5,900 8,000 8,700 5,900 5,900 42,400
7 8,700 5,900 4,200 8,000 8,000 4,200{ 39,000
8 5,350 8,700 7,000 5,350 7,000 5,350 38,750
9 8,000 8,700 7,000 5,350 5,900 5,350 40,300

10 5,350 8,700 7,000 8,000 8,000 8,000 45,050
11 5,350 8,000 8,700 8,000 8,700 5,350 44,100
12 7,000 5,900 5,900 7,000 5,350 8,700 39,850
13 5,900 7,000 5,900 5,350 7,000 5,900 37,050
14 5,350 8,700 5,900 5,350 5,350 8,700 39,350
15 8,700 8,700 5,350 8,000 8,700 8,700 48,150
16 5,350 8,000 8,700 4,200 5,350 4,200{ 35,800
17 8,700 7,000 8,700 7,000 5,350 5,350 42,100
18 5,900 7,000 4,200 7,000 7,000 5,900 37,000
19 4,200 5,350 5,350 5,350 5,350 8,000 33,600
20 8,700 4,200 5,350 8,000 8,700 4,200{ 39,150
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Table A.26 Bootstrap Samples, Replication 6, ScerZaBortie Hours

Trial Month 1 Month 2 Month 3 Month 4 Month § Month 6 tab
1 8,000 7,000 8,700 7,000 5,900 8,000 44,600
2 5,900 4,200 5,900 8,700 4,200 4,200{ 33,100
3 8,000 4,200 5,900 8,700 5,900 8,000 40,700
4 4,200 5,350 8,700 5,900 7,000 8,000 39,150
5 4,200 5,350 7,000 8,000 8,700 7,000 40,250
6 5,900 8,700 8,000 4,200 7,000 8,700 42,500
7 5,350 8,000 4,200 8,000 5,900 7,000 38,450
8 4,200 5,900 4,200 8,000 8,700 5,900 36,900
9 8,700 7,000 4,200 8,700 4,200 4,200{ 37,000

10 8,000 8,700 4,200 8,000 8,000 7,000 43,900
11 5,900 8,000 8,700 4,200 4,200 4,200 35,200
12 5,350 5,900 8,000 7,000 5,350 5,350 36,950
13 5,350 8,700 8,000 8,700 7,000 8,700 46,450
14 4,200 5,900 5,350 7,000 8,700 7,000 38,150
15 4,200 7,000 8,700 5,350 5,350 8,700 39,300
16 8,000 4,200 5,350 5,900 7,000 4,200{ 34,650
17 7,000 4,200 4,200 8,700 7,000 7,000 38,100
18 5,900 8,000 5,900 8,000 5,900 4,200{ 37,900
19 8,700 8,700 8,000 4,200 8,700 4,200 42,500
20 8,000 8,000 4,200 4,200 5,350 8,700 38,450
Table A.27 Bootstrap Samples, Replication 7, ScerZaBortie Hours

Trial Month 1 Month 2 Month 3 Month 4 Month § Month 6 tab
1 8,000 7,000 5,350 8,000 8,000 4,200 40,550
2 4,200 5,900 7,000 8,700 5,900 8,700 40,400
3 7,000 5,900 5,350 5,350 8,700 8,000 40,300
4 8,700 8,000 7,000 7,000 8,000 5,900 44,600
5 5,900 5,900 4,200 8,000 5,900 8,700 38,600
6 4,200 7,000 8,700 8,700 5,350 8,000 41,950
7 7,000 7,000 7,000 4,200 4,200 7,000 36,400
8 8,000 8,000 4,200 8,700 7,000 8,700 44,600
9 5,900 8,000 8,700 4,200 8,000 5,900 40,700

10 7,000 7,000 4,200 8,700 5,350 5,350 37,600
11 5,900 8,000 8,700 8,700 5,350 8,700 45,350
12 4,200 5,350 7,000 4,200 8,000 5,900 34,650
13 8,000 8,700 5,350 5,900 7,000 4,200{ 39,150
14 5,350 4,200 5,900 5,900 8,000 7,000 36,350
15 5,900 8,000 5,900 8,700 4,200 8,000 40,700
16 8,000 8,000 7,000 5,350 5,900 5,900 40,150
17 5,900 8,000 8,700 5,350 5,900 7,000 40,850
18 5,350 8,700 8,000 5,900 7,000 4,200{ 39,150
19 5,900 5,900 5,350 7,000 8,700 5,350 38,200
20 5,900 5,350 8,700 7,000 5,900 8,700 41,550
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Table A.28 Bootstrap Samples, Replication 8, ScerZaBortie Hours

Trial Month 1 Month 2 Month 3 Month 4 Month § Month 6 tab
1 8,000 5,350 8,000 7,000 8,700 4,200 41,250
2 5,350 7,000 7,000 7,000 8,700 5,900 40,950
3 8,700 4,200 5,350 4,200 8,700 8,000 39,150
4 7,000 7,000 8,000 7,000 5,900 8,000 42,900
5 5,350 7,000 5,350 5,350 4,200 8,000 35,250
6 5,900 5,900 8,700 7,000 4,200 8,000 39,700
7 7,000 5,350 8,700 5,350 4,200 8,000 38,600
8 5,900 5,350 4,200 8,700 5,350 5,900 35,400
9 8,000 4,200 8,000 4,200 7,000 4,200{ 35,600

10 5,350 8,000 8,700 7,000 8,700 8,000 45,750
11 8,700 8,700 5,350 5,350 5,900 7,000 41,000
12 7,000 8,000 7,000 5,350 8,000 8,700 44,050
13 5,350 5,350 5,900 5,900 8,700 8,700 39,900
14 4,200 8,700 4,200 7,000 4,200 8,000 36,300
15 5,350 4,200 8,000 5,350 4,200 4,200{ 31,300
16 5,350 8,700 5,900 8,000 5,350 8,000 41,300
17 4,200 8,700 8,700 4,200 4,200 8,700 38,700
18 8,000 8,700 8,000 8,000 8,700 8,000 49,400
19 4,200 5,350 8,000 5,900 5,350 5,900 34,700
20 5,900 5,350 7,000 5,350 4,200 7,000 34,800
Table A.29 Bootstrap Samples, Replication 9, ScerZaBortie Hours

Trial Month 1 Month 2 Month 3 Month 4 Month § Month 6 tab
1 7,000 8,700 5,350 8,000 5,900 5,900 40,850
2 8,700 8,000 5,900 5,350 5,900 8,000 41,850
3 5,350 8,700 8,700 5,350 8,000 5,900 42,000
4 8,000 8,700 5,900 7,000 5,350 8,000 42,950
5 7,000 7,000 7,000 7,000 8,700 8,700 45,400
6 8,700 5,900 5,900 8,000 5,900 5,900 40,300
7 8,000 5,900 8,700 8,700 5,350 7,000 43,650
8 8,700 5,900 5,350 7,000 5,900 8,000 40,850
9 5,350 5,900 7,000 7,000 5,350 4,200{ 34,800

10 5,900 5,900 8,700 5,350 7,000 4,200{ 37,050
11 5,350 5,350 8,000 4,200 8,000 7,000 37,900
12 8,700 8,700 4,200 5,900 7,000 5,900 40,400
13 4,200 5,350 5,350 8,700 5,900 4,200{ 33,700
14 8,000 8,000 7,000 5,900 8,700 8,000 45,600
15 4,200 4,200 7,000 5,900 5,900 5,350 32,550
16 5,350 5,350 4,200 8,000 5,350 8,000 36,250
17 4,200 5,900 5,900 7,000 4,200 8,000 35,200
18 8,000 5,350 8,000 5,900 5,900 5,350 38,500
19 8,700 7,000 5,350 8,000 5,900 4,200{ 39,150
20 8,700 5,350 5,350 8,000 4,200 5,350 36,950
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Table A.30 Bootstrap Samples, Replication 10, SterZaSortie Hours

Trial Month 1 Month 2 Month 3 Month 4 Month § Month 6 tab
1 4,200 4,200 4,200 8,700 8,700 8,700 38,700
2 8,000 5,900 4,200 5,350 8,000 8,000 39,450
3 8,000 7,000 5,350 4,200 5,900 8,000 38,450
4 7,000 7,000 8,700 7,000 5,350 5,350 40,400
5 4,200 5,900 7,000 7,000 5,350 8,000 37,450
6 5,900 8,000 5,900 4,200 5,900 5,900 35,800
7 5,900 8,000 5,900 4,200 7,000 8,000 39,000
8 8,700 4,200 5,900 4,200 8,000 8,700 39,700
9 8,700 7,000 7,000 8,700 4,200 5,350 40,950

10 7,000 4,200 8,000 8,000 8,700 4,200 40,100
11 7,000 4,200 4,200 8,000 5,900 4,200{ 33,500
12 5,900 4,200 8,000 8,700 8,700 8,700 44,200
13 4,200 5,350 8,000 8,000 5,350 5,900 36,800
14 4,200 5,900 5,900 4,200 8,000 5,350 33,550
15 8,000 7,000 5,350 4,200 7,000 8,700 40,250
16 8,000 5,350 4,200 8,700 5,900 7,000 39,150
17 7,000 5,900 5,350 5,900 7,000 4,200{ 35,350
18 7,000 8,700 4,200 8,700 7,000 8,000 43,600
19 5,350 4,200 5,350 8,700 8,700 8,700 41,000
20 5,350 8,700 4,200 4,200 7,000 8,000 37,450
Table A.31 Bootstrap Samples, Replication 11, SeerZaSortie Hours

Trial Month 1 Month 2 Month 3 Month 4 Month § Month 6 tab
1 7,000 7,000 7,000 5,900 4,200 5,350 36,450
2 7,000 5,350 7,000 7,000 5,350 4,200 35,900
3 5,900 7,000 4,200 4,200 4,200 7,000 32,500
4 5,350 7,000 5,900 4,200 8,000 8,000 38,450
5 5,350 8,700 8,700 5,350 4,200 8,000 40,300
6 7,000 5,350 4,200 4,200 5,900 7,000 33,650
7 5,350 5,350 8,700 8,000 8,000 8,000 43,400
8 8,700 4,200 7,000 4,200 8,700 8,700 41,500
9 8,000 8,000 4,200 5,350 5,900 8,700 40,150

10 5,900 7,000 5,350 5,900 8,700 5,900 38,750
11 5,350 4,200 8,000 4,200 7,000 8,700 37,450
12 8,700 7,000 5,900 4,200 8,000 4,200 38,000
13 7,000 8,000 8,000 5,900 5,900 5,900 40,700
14 8,000 7,000 8,000 8,000 8,000 5,900 44,900
15 5,900 8,700 8,000 4,200 7,000 5,350 39,150
16 7,000 5,350 4,200 5,900 7,000 8,700 38,150
17 8,000 5,350 8,000 4,200 8,000 8,700 42,250
18 4,200 8,700 8,000 4,200 8,700 8,700 42,500
19 7,000 8,700 8,700 8,700 4,200 5,350 42,650
20 8,700 8,700 4,200 8,000 8,000 8,000 45,600
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Table A.32 Bootstrap Samples, Replication 12, SterZaSortie Hours

Trial Month 1 Month 2 Month 3 Month 4 Month § Month 6 tab
1 8,700 5,350 4,200 4,200 8,000 8,000 38,450
2 7,000 8,000 8,000 5,900 7,000 8,700 44,600
3 7,000 5,350 5,350 4,200 8,700 4,200{ 34,800
4 5,900 7,000 8,000 4,200 8,000 5,350 38,450
5 7,000 7,000 7,000 8,000 7,000 5,900 41,900
6 5,900 5,900 4,200 4,200 4,200 8,700 33,100
7 8,700 5,900 4,200 7,000 7,000 4,200{ 37,000
8 8,700 4,200 8,700 8,700 8,700 7,000 46,000
9 7,000 5,900 4,200 7,000 5,900 5,900 35,900

10 4,200 8,000 4,200 8,000 8,700 4,200{ 37,300
11 4,200 7,000 7,000 8,700 5,350 4,200{ 36,450
12 8,000 4,200 4,200 5,900 7,000 5,350 34,650
13 7,000 5,900 8,000 8,700 5,350 4,200{ 39,150
14 7,000 5,900 8,000 5,900 4,200 4,200 35,200
15 4,200 8,000 7,000 4,200 5,350 4,200{ 32,950
16 5,350 8,700 8,700 8,700 7,000 5,900 44,350
17 5,350 8,000 8,700 7,000 5,900 7,000 41,950
18 8,700 8,700 5,350 8,000 4,200 5,350 40,300
19 8,700 8,000 5,350 7,000 7,000 5,350 41,400
20 5,900 7,000 7,000 8,000 7,000 5,350 40,250
Table A.33 Bootstrap Samples, Replication 13, SterZaSortie Hours

Trial Month 1 Month 2 Month 3 Month 4 Month § Month 6 tab
1 7,000 8,000 7,000 5,900 7,000 5,900 40,800
2 8,000 8,000 5,350 4,200 4,200 5,350 35,100
3 8,000 5,900 4,200 5,900 8,700 8,000 40,700
4 4,200 7,000 5,350 5,900 8,700 7,000 38,150
5 8,000 5,350 5,350 8,000 5,900 8,700 41,300
6 5,900 5,350 8,000 8,700 8,700 5,900 42,550
7 5,350 5,900 8,700 5,350 8,700 8,700 42,700
8 8,000 8,000 5,900 5,900 5,900 8,000 41,700
9 8,000 7,000 8,700 5,900 5,350 7,000 41,950

10 8,000 5,900 5,350 5,900 5,350 8,700 39,200
11 7,000 4,200 8,000 7,000 8,000 4,200 38,400
12 5,350 8,700 7,000 5,900 5,350 5,350 37,650
13 5,350 8,700 7,000 8,000 5,350 8,700 43,100
14 8,000 5,350 7,000 5,900 5,900 8,000 40,150
15 8,700 8,700 4,200 4,200 5,350 7,000 38,150
16 8,000 5,350 8,000 5,350 5,900 8,000 40,600
17 4,200 8,700 5,350 5,900 7,000 4,200{ 35,350
18 8,700 8,000 8,700 8,000 5,900 7,000 46,300
19 5,900 8,700 5,350 7,000 5,900 4,200{ 37,050
20 7,000 5,350 8,000 5,900 7,000 4,200{ 37,450
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Table A.34 Bootstrap Samples, Replication 14, SterZaSortie Hours

Trial Month 1 Month 2 Month 3 Month 4 Month § Month 6 tab
1 8,000 4,200 7,000 5,350 5,900 5,350 35,800
2 8,700 4,200 4,200 5,350 5,350 4,200{ 32,000
3 5,350 4,200 5,900 8,700 8,000 5,900 38,050
4 4,200 8,000 5,900 8,000 5,350 7,000 38,450
5 8,700 8,700 8,000 5,350 8,700 7,000 46,450
6 5,900 4,200 4,200 5,900 8,700 8,700 37,600
7 7,000 8,700 8,000 5,900 5,350 7,000 41,950
8 5,350 8,700 8,700 8,000 7,000 8,700 46,450
9 7,000 8,000 5,900 5,900 5,350 5,350 37,500

10 4,200 5,900 5,900 7,000 7,000 5,900 35,900
11 5,350 5,350 5,900 8,700 8,700 4,200 38,200
12 7,000 7,000 8,700 5,900 7,000 5,350 40,950
13 4,200 8,000 8,000 5,350 4,200 4,200{ 33,950
14 4,200 5,900 5,350 4,200 4,200 8,000 31,850
15 5,350 8,000 5,900 4,200 8,700 5,900 38,050
16 5,350 8,700 5,350 7,000 7,000 8,000 41,400
17 4,200 8,000 5,900 8,000 5,350 7,000 38,450
18 5,350 7,000 4,200 7,000 5,350 5,350 34,250
19 4,200 4,200 4,200 8,000 7,000 5,350 32,950
20 4,200 5,900 7,000 5,350 7,000 4,200{ 33,650
Table A.35 Bootstrap Samples, Replication 15, SterZaSortie Hours

Trial Month 1 Month 2 Month 3 Month 4 Month § Month 6 tab
1 5,900 5,350 5,900 7,000 5,900 8,000 38,050
2 4,200 8,700 7,000 8,700 5,900 5,350 39,850
3 5,900 7,000 5,350 5,350 8,000 5,900 37,500
4 8,000 5,900 8,700 7,000 8,700 7,000 45,300
5 8,000 5,350 8,000 5,900 4,200 7,000 38,450
6 5,350 5,900 7,000 7,000 4,200 4,200{ 33,650
7 4,200 7,000 5,350 4,200 5,900 5,350 32,000
8 7,000 8,000 5,900 8,700 5,900 4,200{ 39,700
9 8,000 8,000 5,900 4,200 5,350 7,000 38,450

10 8,000 4,200 4,200 4,200 5,350 4,200{ 30,150
11 8,700 4,200 5,350 5,900 4,200 8,700 37,050
12 7,000 8,700 8,000 5,350 7,000 8,700 44,750
13 4,200 5,350 8,700 5,900 5,900 8,700 38,750
14 5,900 4,200 7,000 5,350 7,000 7,000 36,450
15 5,900 7,000 7,000 4,200 8,700 5,900 38,700
16 7,000 4,200 7,000 7,000 5,350 5,900 36,450
17 8,000 8,000 8,000 5,900 8,700 4,200, 42,800
18 5,350 7,000 7,000 4,200 5,900 5,900 35,350
19 8,700 8,000 4,200 7,000 4,200 8,000 40,100
20 4,200 7,000 8,700 4,200 7,000 4,200{ 35,300
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Table A.36 Bootstrap Samples, Replication 16, SterZaSortie Hours

Trial Month 1 Month 2 Month 3 Month 4 Month § Month 6 tab
1 5,350 4,200 7,000 4,200 8,000 5,350 34,100
2 5,900 5,900 4,200 4,200 8,700 5,350 34,250
3 8,000 8,000 5,350 8,000 5,900 8,700 43,950
4 5,900 7,000 8,000 8,000 8,000 5,900 42,800
5 7,000 5,900 8,000 7,000 8,000 5,350 41,250
6 8,000 5,900 5,900 5,900 7,000 7,000 39,700
7 8,700 8,000 5,900 8,700 4,200 5,350 40,850
8 8,700 8,700 5,900 8,700 4,200 5,900 42,100
9 4,200 8,000 5,350 4,200 8,000 8,700 38,450

10 5,900 8,000 5,350 5,900 5,350 7,000 37,500
11 5,350 8,700 7,000 8,000 7,000 5,350 41,400
12 5,900 5,350 4,200 5,350 5,350 5,900 32,050
13 7,000 7,000 8,000 8,000 4,200 4,200 38,400
14 5,900 7,000 4,200 4,200 8,700 7,000 37,000
15 7,000 8,000 4,200 5,900 5,900 5,350 36,350
16 4,200 8,700 7,000 4,200 8,000 4,200{ 36,300
17 8,000 7,000 7,000 7,000 5,900 4,200{ 39,100
18 4,200 7,000 7,000 5,350 7,000 8,700 39,250
19 5,900 5,900 8,700 5,900 5,900 8,000 40,300
20 4,200 8,000 8,700 7,000 8,700 8,700 45,300
Table A.37 Bootstrap Samples, Replication 17, SterZaSortie Hours

Trial Month 1 Month 2 Month 3 Month 4 Month § Month 6 tab
1 4,200 8,000 7,000 8,700 5,900 4,200 38,000
2 5,350 5,350 5,900 5,350 5,350 8,700 36,000
3 5,900 7,000 5,350 7,000 8,000 8,000 41,250
4 8,700 8,700 8,700 5,900 7,000 5,900 44,900
5 5,350 5,350 8,700 8,000 8,000 8,000 43,400
6 8,000 8,000 7,000 5,350 8,000 8,000 44,350
7 5,900 5,900 5,350 5,350 8,000 4,200 34,700
8 5,350 4,200 5,900 8,000 8,000 8,000 39,450
9 5,350 5,900 5,350 8,700 8,000 8,700 42,000

10 5,900 5,350 7,000 8,700 5,900 5,350 38,200
11 8,000 8,000 8,000 8,000 8,700 8,000 48,700
12 8,700 4,200 8,700 4,200 8,000 8,700 42,500
13 5,350 5,350 8,000 4,200 5,900 8,000 36,800
14 8,000 7,000 5,350 8,700 7,000 7,000 43,050
15 8,000 8,000 8,700 5,900 4,200 8,700 43,500
16 4,200 8,000 4,200 7,000 5,350 8,000 36,750
17 5,350 7,000 7,000 7,000 5,350 8,000 39,700
18 5,900 5,900 5,350 8,000 4,200 4,200{ 33,550
19 8,700 5,350 7,000 4,200 8,000 4,200 37,450
20 8,700 5,350 8,000 5,900 5,900 8,000 41,850
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Table A.38 Bootstrap Samples, Replication 18, SterZaSortie Hours

Trial Month 1 Month 2 Month 3 Month 4 Month § Month 6 tab
1 8,700 7,000 5,350 5,900 8,000 5,900 40,850
2 7,000 5,900 8,700 5,350 4,200 8,700 39,850
3 8,700 8,700 8,700 8,700 5,900 8,000 48,700
4 8,700 5,350 4,200 8,000 7,000 7,000 40,250
5 4,200 5,900 4,200 5,350 5,350 4,200 29,200
6 5,350 8,700 8,700 8,700 4,200 8,000 43,650
7 7,000 8,000 5,350 4,200 7,000 7,000 38,550
8 5,900 8,700 8,000 8,000 4,200 5,900 40,700
9 7,000 4,200 7,000 8,700 4,200 4,200{ 35,300

10 4,200 8,700 8,000 8,000 5,900 8,700 43,500
11 7,000 7,000 4,200 5,350 5,900 4,200{ 33,650
12 4,200 8,700 4,200 8,000 4,200 7,000 36,300
13 5,900 8,000 8,700 7,000 5,350 4,200{ 39,150
14 4,200 5,350 8,000 5,350 7,000 5,900 35,800
15 4,200 8,700 7,000 8,000 5,350 8,000 41,250
16 7,000 7,000 5,900 4,200 8,700 5,900 38,700
17 5,350 7,000 8,700 7,000 5,350 5,350 38,750
18 4,200 8,700 7,000 4,200 8,000 5,900 38,000
19 8,000 4,200 8,000 8,000 8,000 4,200 40,400
20 7,000 4,200 8,000 7,000 5,900 4,200{ 36,300
Table A.39 Bootstrap Samples, Replication 19, SterZaSortie Hours

Trial Month 1 Month 2 Month 3 Month 4 Month § Month 6 tab
1 4,200 8,000 5,900 8,700 5,350 4,200{ 36,350
2 5,350 5,350 8,700 8,700 7,000 4,200{ 39,300
3 4,200 8,700 8,700 7,000 7,000 4,200{ 39,800
4 5,900 4,200 5,350 8,700 5,350 8,700 38,200
5 7,000 4,200 8,700 5,350 5,350 8,000 38,600
6 7,000 8,700 5,900 8,000 5,900 4,200{ 39,700
7 5,900 7,000 8,700 5,900 8,000 5,900 41,400
8 7,000 8,000 8,000 5,350 5,900 5,350 39,600
9 5,900 5,900 8,700 4,200 7,000 8,700 40,400

10 5,350 7,000 4,200 7,000 7,000 5,900 36,450
11 5,350 5,900 8,000 8,000 5,350 4,200{ 36,800
12 8,700 5,900 7,000 8,000 8,700 8,700 47,000
13 8,700 8,700 4,200 5,350 7,000 8,000 41,950
14 5,350 8,000 7,000 8,000 7,000 5,900 41,250
15 5,900 8,700 8,000 7,000 4,200 5,900, 39,700
16 7,000 7,000 8,700 5,350 8,000 5,350 41,400
17 8,000 4,200 5,350 7,000 7,000 7,000 38,550
18 4,200 5,900 8,000 8,700 5,900 8,000 40,700
19 8,700 7,000 8,700 4,200 8,000 7,000 43,600
20 5,350 8,700 8,000 4,200 8,000 5,900 40,150
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Table A.40 Bootstrap Samples, Replication 20, SterZaSortie Hours

Trial Month 1 Month 2 Month 3 Month 4 Month § Month 6 tab
1 8,700 5,350 8,700 4,200 4,200 8,700 39,850
2 8,700 4,200 5,350 5,350 4,200 8,700 36,500
3 5,900 8,000 8,000 4,200 7,000 4,200 37,300
4 7,000 4,200 7,000 4,200 8,700 7,000 38,100
5 5,350 5,900 4,200 8,000 5,900 8,000 37,350
6 4,200 8,700 8,700 7,000 5,350 8,700 42,650
7 7,000 5,900 7,000 8,000 8,700 4,200 40,800
8 8,000 8,700 7,000 4,200 5,900 7,000 40,800
9 5,900 4,200 8,700 8,000 5,900 4,200 36,900

10 5,350 7,000 8,700 7,000 8,000 5,900 41,950
11 7,000 8,000 5,900 8,000 5,900 7,000 41,800
12 8,700 7,000 8,700 5,350 8,700 8,700 47,150
13 8,000 5,900 4,200 5,900 5,350 7,000 36,350
14 7,000 7,000 5,900 8,000 5,900 4,200 38,000
15 8,700 8,000 7,000 5,900 5,350 5,900 40,850
16 5,900 8,700 4,200 4,200 5,350 4,200 32,550
17 8,000 5,900 8,000 4,200 5,900 5,900 37,900
18 5,900 4,200 7,000 7,000 7,000 4,200 35,300
19 4,200 8,700 4,200 5,900 8,700 8,000 39,700
20 5,350 4,200 8,000 5,900 8,000 7,000 38,450
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A.3 Scenario 1 U-Boat Sightings

Table A.41 Bootstrap Samples, Replication 1, ScerfalJ-Boat Sightings

Trial Month 1 Month 2 Month 3 Month 4 Month % Month 6 Total
1 14 18 10 42 42 42 168
2 18 14 42 18 19 18 129
3 18 18 19 18 19 14 106
4 10 14 14 14 42 14 108
5 14 19 42 32 42 19 168
6 42 18 32 32 42 14 180
7 19 32 14 32 1§ 19 134
8 18 14 14 10 14 42 112
9 18 19 18 42 1§ 19 134
10 32 32 32 37 18 18 164
11 32 10 19 14 10 32 117
12 10 19 42 37 10 32 145
13 32 19 19 42 18 18 148
14 32 32 42 42 42 10 200
15 10 32 14 18 18 32 124
16 32 32 10 18 42 14 148
17 19 19 14 19 19 32 122
18 32 19 42 18 32 14 157
19 10 19 19 37 32 32 144
20 32 42 10 37 42 14 172
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Table A.42 Bootstrap Samples, Replication 2, ScerfalJ-Boat Sightings

Trial Month 1 Month 2 Month 3 Month 4 Month % Month 6 Total
1 14 18 10 42 42 42 168
2 18 14 42 18 19 18 129
3 18 18 19 18 19 14 106
4 10 14 14 14 42 14 108
5 14 19 42 32 42 19 168
6 42 18 32 32 42 14 180
7 19 32 14 32 1§ 19 134
8 18 14 14 10 14 42 112
9 18 19 18 42 1§ 19 134
10 32 32 32 37 18 18 164
11 32 10 19 14 10 32 117
12 10 19 42 37 10 32 145
13 32 19 19 42 18 18 148
14 32 32 42 42 42 10 200
15 10 32 14 18 18 32 124
16 32 32 10 18 42 14 148
17 19 19 14 19 19 32 122
18 32 19 42 18 32 14 157
19 10 19 19 37 32 32 144
20 32 42 10 37 42 14 172

Table A.43 Bootstrap Samples, Replication 3,

ScerfatJ-Boat Sightings

Trial Month 1 Month 2 Month 3 Month 4 Month % Month 6 Total
1 42 10 42 14 19 4p 169
2 19 32 32 14 19 18 134
3 42 19 10 14 42 4p 169
4 32 42 10 32 14 18 148
5 42 14 18 32 32 10 148
6 10 19 32 32 42 18 153
7 32 42 18 10 42 4p 186
8 10 10 42 14 19 32 127
9 14 42 32 42 14 19 1683
10 18 18 10 1Q 14 10 80
11 10 42 10 18 18 10 108
12 32 18 19 37 14 14 129
13 14 19 19 37 10 42 136
14 10 10 10 1Q 14 18 7
15 10 10 32 19 32 10 113
16 10 32 42 18 18 32 152
17 42 19 18 19 10 10 118
18 18 19 32 1Q 19 10 108
19 19 19 42 42 19 14 155
20 10 42 32 42 10 42 178
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Table A.44 Bootstrap Samples, Replication 4, ScerfalJ-Boat Sightings

Trial Month 1 Month 2 Month 3 Month 4 Month % Month 6 Total
1 19 19 42 32 1§ 4p 172
2 14 18 18 19 32 32 133
3 14 14 10 14 32 19 103
4 42 32 32 18 32 4p 198
5 19 14 18 42 42 10 145
6 18 32 32 42 19 4p 185
7 19 19 18 42 19 42 159
8 18 14 18 42 1( 10 112
9 42 42 14 18 19 32 167
10 32 32 18 18 14 19 133
11 19 32 19 14 14 4p 140
12 18 19 14 18 18 18 105
13 32 14 10 18 42 18 134
14 19 18 14 10 42 19 122
15 19 19 32 42 18 4p 172
16 42 19 10 19 32 10 132
17 10 18 14 32 14 4p 130
18 18 32 42 18 10 18 138
19 10 42 42 1Q 19 32 155
20 32 32 19 37 42 10 167
Table A.45 Bootstrap Samples, Replication 5, ScerfalJ-Boat Sightings
Trial Month 1 Month 2 Month 3 Month 4 Month % Month 6 Total
1 14 10 42 18 1( 14 108
2 42 42 42 18 32 10 186
3 32 32 14 42 32 14 166
4 14 14 18 32 1( 32 120
5 14 32 42 42 1§ 32 180
6 14 19 32 42 42 10 159
7 19 14 18 10 14 32 107
8 18 32 42 19 1( 32 153
9 42 14 10 14 32 42 154
10 14 18 19 32 42 19 144
11 19 42 10 37 42 19 164
12 19 42 14 18 42 18 153
13 14 18 18 37 10 18 110
14 42 10 42 14 14 10 132
15 18 19 42 10 19 19 127
16 18 42 42 32 14 19 167
17 14 14 14 32 14 10 98
18 32 10 18 1Q 32 14 116
19 18 18 19 1Q 19 42 126
20 14 32 42 19 18 19 144
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Table A.46 Bootstrap Samples, Replication 6, ScéerfalJ-Boat Sightings

Trial Month 1 Month 2 Month 3 Month 4 Month % Month 6 Total
1 10 10 32 18 19 10 99
2 10 14 14 42 32 18 130
3 19 14 19 14 1( 19 96
4 32 14 32 19 1( 18 125
5 42 32 18 42 14 18 166
6 19 10 19 32 14 32 126
7 18 18 42 10 32 18 138
8 18 14 14 42 42 14 144
9 32 32 19 19 14 32 148
10 18 42 42 1Q 18 10 140
11 42 10 42 42 10 19 165
12 19 42 32 37 19 18 162
13 14 42 32 19 19 10 136
14 18 32 18 42 42 19 171
15 42 32 32 18 42 19 185
16 42 18 19 42 14 14 149
17 32 14 18 1Q 32 32 138
18 14 32 42 37 10 19 149
19 10 14 42 42 18 10 136
20 42 32 10 42 42 14 182

Table A.47 Bootstrap Samples, Replication 7,

ScerfatJ-Boat Sightings

Trial Month 1 Month 2 Month 3 Month 4 Month % Month 6 Total
1 19 18 18 18 1§ 32 123
2 32 42 19 18 1§ 19 148
3 14 42 19 42 1( 32 159
4 42 32 10 14 1( 19 127
5 32 14 19 19 42 10 136
6 10 42 19 10 14 32 127
7 42 14 42 32 42 4p 214
8 32 42 14 10 42 19 159
9 10 18 14 42 1( 10 104
10 19 18 19 18 42 14 130
11 42 42 32 37 32 10 190
12 14 14 19 14 42 14 117
13 42 19 42 18 10 32 163
14 18 42 32 18 18 18 146
15 19 18 18 18 19 14 106
16 42 32 14 14 19 42 163
17 42 19 42 19 32 42 196
18 10 19 14 37 18 19 112
19 10 14 18 1Q 32 18 102
20 19 19 10 14 19 10 91
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Table A.48 Bootstrap Samples, Replication 8, ScerfalJ-Boat Sightings

Trial Month 1 Month 2 Month 3 Month 4 Month % Month ¢ Total
1 19 19 14 42 14 14 126
2 10 10 42 19 10 18 108
3 10 32 19 14 19 18 11p
4 10 10 14 32 10 4% 118
5 19 10 18 14 42 19 12p
6 14 19 14 32 14 4% 135
7 19 18 32 14 14 18 115
8 19 19 19 19 14 4% 131
9 19 14 14 32 14 4% 135
10 18 10 19 14 42 10 113
11 14 18 14 19 42 19 126
12 14 10 19 47 10 14 109
13 14 18 10| 14 18 19 93
14 32 42 32 32 18 4P 198
15 18 32 18 47 42 10 162
16 32 10 18 18 32 4P 152
17 10 19 19 19 18 19 104
18 10 19 42 32 14 14 131
19 19 32 42 18 18 19 148
20 14 42 14 1d 19 19 118

Table A.49 Bootstrap Samples, Replication 9,

ScerfatJ-Boat Sightings

Trial Month 1 Month 2 Month 3 Month 4 Month % Month 6 Total
1 18 42 10 18 42 18 14
2 42 18 18 19 19 4p 15
3 14 42 19 19 1( 18 12
4 32 32 42 42 14 10 17
5 18 14 18 18 14 19 10
6 19 18 14 32 1§ 32 13
7 14 19 14 18 42 18 12
8 32 32 32 32 42 19 18
9 42 32 19 19 1( 4p 16
10 42 32 42 18 32 19 18
11 32 32 32 1Q 18 14 13
12 19 18 18 19 19 32 12
13 19 14 42 19 10 32 13
14 32 14 19 14 18 19 11
15 42 10 19 37 32 14 14
16 19 19 42 18 10 42 15
17 19 10 42 1Q 42 19 14
18 14 42 42 1Q 19 32 15
19 42 19 32 19 14 18 14
20 18 18 19 42 19 10 12
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Table A.50 Bootstrap Samples, Replication 10, SterdaU-Boat Sightings

Trial Month 1 Month 2 Month 3 Month 4 Month % Month 6 Total
1 19 42 10 32 1§ 10 131
2 19 42 18 10 1§ 14 121
3 18 18 42 19 32 32 16l
4 42 10 10 14 1§ 4p 136
5 10 10 19 14 14 18 8b
6 19 18 10 18 14 10 80
7 14 32 32 10 19 32 139
8 32 18 42 14 32 10 148
9 19 19 14 10 14 32 108
10 14 19 42 18 10 18 121
11 10 10 10 19 14 10 73
12 32 19 14 42 10 32 149
13 18 10 18 37 14 14 106
14 18 19 42 14 18 42 153
15 10 42 18 42 19 42 173
16 18 19 19 18 10 32 116
17 32 14 10 18 19 42 135
18 18 14 18 14 18 19 101
19 14 19 42 18 32 19 144
20 14 14 32 1Q 18 19 107

Table A.51 Bootstrap Samples, Replication 11

, SuerdaU-Boat Sightings

Trial Month 1 Month 2 Month 3 Month 4 Month % Month 6 Total
1 10 32 42 18 42 18 16Q2
2 10 14 42 14 32 32 144
3 10 10 32 32 1§ 10 112
4 32 42 19 18 14 4p 16[7
5 10 14 42 18 14 18 116
6 32 14 32 42 1§ 14 152
7 32 32 18 10 19 4p 153
8 19 19 18 18 1( 10 94
9 18 32 18 19 1( 19 116
10 10 10 18 18 42 14 112
11 42 18 42 18 32 14 166
12 32 18 10 37 19 18 129
13 32 18 18 42 10 10 130
14 14 14 32 18 10 19 107
15 14 10 42 37 32 18 148
16 18 19 14 18 19 18 106
17 32 18 18 18 10 14 110
18 42 32 14 1Q 14 32 144
19 32 19 14 1Q 14 32 121
20 19 14 32 37 14 42 153
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Table A.52 Bootstrap Samples, Replication 12, SterdaU-Boat Sightings

Trial Month 1 Month 2 Month 3 Month 4 Month % Month ¢ Total
1 32 18 18 19 10 10 106
2 14 10 14 19 14 10 8p
3 32 19 19 10 32 4% 154
4 19 32 42 32 19 18 162
5 19 19 19 32 14 10 117
6 14 42 19 19 19 19 132
7 19 18 18 14 10 10 89
8 42 10 18 14 2 18 144
9 18 42 32 42 2 32 198
10 14 10 19 19 42 14 118
11 18 19 42 10 42 14 145
12 14 19 10| 18 19 3p 112
13 19 18 32 19 18 4P 148
14 19 42 10 14 18 18 121
15 42 42 10| 10 18 14 136
16 14 42 42 18 32 3p 180
17 14 19 19 14 42 4P 150
18 10 18 18 18 19 18 101
19 18 19 19 32 14 3p 134
20 19 42 10| 19 42 10 142

Table A.53 Bootstrap Samples, Replication 13

, SuerdaU-Boat Sightings

Trial Month 1 Month 2 Month 3 Month 4 Month % Month 6 Total
1 14 10 18 1qQ 32 19 108
2 42 14 42 42 14 32 186
3 14 19 42 14 19 14 12p
4 32 19 14 10 1§ 10 108
5 18 42 10 42 1§ 18 148
6 10 19 10 18 14 10 8
7 18 14 42 32 32 18 156
8 14 14 10 14 19 18 80
9 19 32 32 18 42 18 16l
10 32 19 14 37 14 32 143
11 18 10 42 14 10 10 104
12 32 19 42 19 42 10 164
13 32 14 14 19 18 42 139
14 10 32 42 14 14 10 122
15 10 32 10 1Q 14 14 90
16 32 42 14 18 10 32 148
17 14 18 14 14 19 32 111
18 32 19 10 42 42 14 159
19 19 18 10 1Q 18 14 89
20 19 42 14 19 10 18 122
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Table A.54 Bootstrap Samples, Replication 14, SterdaU-Boat Sightings

Trial Month 1 Month 2 Month 3 Month 4 Month % Month 6 Total
1 14 32 19 32 1( 19 126
2 14 42 10 10 32 4p 150
3 10 10 10 19 32 10 o
4 32 10 18 10 1( 19 99
5 14 19 32 10 19 18 112
6 14 14 18 32 42 19 139
7 42 42 18 14 1( 19 145
8 14 18 10 19 18 14 93
9 10 42 32 19 1( 14 127
10 19 10 42 18 19 32 140
11 42 42 32 37 19 14 181
12 14 42 18 32 14 32 152
13 10 14 32 19 19 42 136
14 32 14 42 32 18 14 152
15 14 14 32 18 42 18 138
16 14 18 14 42 19 4p 149
17 18 42 32 14 19 18 143
18 19 18 32 14 19 18 120
19 32 18 18 37 42 18 160
20 19 19 18 42 19 14 131
Table A.55 Bootstrap Samples, Replication 15, SterdaU-Boat Sightings
Trial Month 1 Month 2 Month 3 Month 4 Month % Month 6 Total
1 14 10 32 42 18 42 158
2 19 32 18 10 32 19 130
3 32 18 19 42 32 18 16l
4 32 14 32 14 1( 18 120
5 42 19 10 14 1( 42 137
6 32 42 32 42 42 18 208
7 32 18 42 32 19 4p 185
8 10 32 19 18 14 4p 135
9 19 19 10 1qQ 1§ 10 8b
10 18 10 14 14 32 18 106
11 19 19 14 19 32 4p 145
12 14 18 19 18 42 10 121
13 18 42 18 18 32 10 138
14 10 32 14 37 10 42 140
15 10 32 18 10 10 14 94
16 32 10 10 18 14 18 102
17 14 19 32 42 18 18 143
18 14 10 14 42 19 32 131
19 19 14 42 42 10 32 159
20 18 32 18 37 10 19 129
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Table A.56 Bootstrap Samples, Replication 16, SterdaU-Boat Sightings

Trial Month 1 Month 2 Month 3 Month 4 Month % Month ¢ Total
1 19 14 42 42 14 10 141
2 32 18 42 42 42 42 218
3 14 42 42 10 14 18 140
4 18 19 18 19 1§ 14 106
5 14 10 18 19 32 18 111
6 32 32 19 10 18 14 1256
7 42 14 18 18 32 32 156
8 14 14 19 10 19 19 95
9 19 10 18 14 14 18 9B
10 19 18 32 14 18 10 111
11 42 18 42 18 18 3p 170
12 19 32 14 37 19 19 135
13 42 10 42 19 32 32 177
14 19 19 32 42 32 14 158
15 42 19 19 10Q 19 19 128
16 18 32 32 14 14 4p 152
17 18 18 42 42 10 4p 172
18 42 19 10 19 19 10 119
19 18 42 18 14 32 18 142
20 32 10 19 42 14 19 136
Table A.57 Bootstrap Samples, Replication 17, SterdaU-Boat Sightings
Trial Month 1 Month 2 Month 3 Month 4 Month % Month ¢ Total
1 32 14 10 10 14 10 9D
2 14 14 19 42 42 10 141
3 14 18 42 42 42 32 190
4 19 19 42 18 1§ 18 134
5 32 19 32 19 1( 10 12p
6 14 18 10 18 14 18 op
7 18 10 14 18 14 10 sy
8 10 14 18 18 18 42 120
9 32 14 32 32 14 42 166
10 42 32 32 10Q 10 19 145
11 18 32 42 42 10 19 163
12 32 32 32 14 10 10 130
13 19 10 18 19 18 14 98
14 10 18 32 14 10 18 102
15 14 42 18 37 18 14 138
16 32 42 42 10Q 10 10 146
17 19 18 18 19 32 14 120
18 32 14 19 42 32 19 158
19 14 42 42 14 10 10 132
20 32 32 32 42 14 19 171
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Table A.58 Bootstrap Samples, Replication 18, SterdaU-Boat Sightings

Trial Month 1 Month 2 Month 3 Month 4 Month % Month 6 Total
1 19 32 19 19 19 32 140
2 18 32 32 42 14 19 157
3 10 42 32 18 14 14 130
4 32 18 42 42 19 42 195
5 10 14 42 19 18 32 135
6 10 19 42 32 42 32 177
7 18 19 18 42 32 14 143
8 42 19 19 19 1( 32 141
9 42 18 14 32 42 18 166
10 14 10 10 42 18 4p 136
11 14 32 14 19 10 32 121
12 19 14 19 1Q 19 42 123
13 32 18 19 14 42 19 144
14 14 42 10 42 19 10 137
15 19 19 32 32 14 4p 158
16 14 18 18 42 19 10 121
17 14 14 10 32 19 4p 131
18 10 42 10 42 14 18 136
19 19 32 42 1Q 32 32 167
20 10 42 32 1Q 42 19 155
Table A.59 Bootstrap Samples, Replication 19, SterdaU-Boat Sightings
Trial Month 1 Month 2 Month 3 Month 4 Month % Month 6 Total
1 32 32 42 18 32 32 188
2 10 10 19 14 14 14 8L
3 19 18 10 14 32 32 125
4 32 14 32 10 1( 4p 140
5 32 32 32 14 32 32 174
6 19 10 18 14 14 32 107
7 19 42 10 42 32 10 156
8 32 42 10 10 14 14 12p
9 32 32 42 1qQ 1( 18 144
10 19 10 32 42 18 19 140
11 14 32 32 14 10 4p 144
12 18 14 42 42 10 18 144
13 14 42 32 1Q 42 19 159
14 10 14 19 19 14 19 95
15 42 19 18 42 32 32 185
16 19 18 42 19 10 10 118
17 18 14 19 32 42 32 157
18 18 32 32 37 19 32 165
19 18 14 14 42 14 4p 144
20 18 10 10 37 19 19 108
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Table A.60 Bootstrap Samples, Replication 20, SterdaU-Boat Sightings

Trial Month 1 Month 2 Month 3 Month 4 Month % Month 6 Total
1 19 14 32 1qQ 42 10 127
2 32 42 19 42 1( 32 177
3 14 19 19 10 1( 18 9D
4 19 10 14 18 1( 10 8
5 42 18 18 14 14 19 125
6 18 10 32 18 1§ 32 128
7 42 18 10 18 42 19 1409
8 32 18 18 42 1§ 10 138
9 32 32 42 42 42 10 200
10 18 32 42 1Q 32 19 153
11 14 19 14 14 10 18 89
12 32 32 10 42 14 10 140
13 18 10 10 1Q 19 42 109
14 14 14 18 18 19 19 102
15 18 14 32 14 32 19 129
16 18 32 19 42 18 19 148
17 10 32 14 19 32 32 139
18 14 18 42 19 10 14 117
19 10 32 14 42 32 19 149
20 14 18 19 19 18 18 106
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A.4 Scenario 1 U-Boat Kills

Table A.61 Bootstrap Samples, Replication 1, SceralJ-Boat Kills

abt

13P)

129}

13P)

13P)

Month 6

Month 5

Month 4

Month 3

Month 2

Month 1

Trial

10
11
12
13
14
15
16
17
18
19
20
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Table A.62 Bootstrap Samples, Replication 2, SceralJ-Boat Kills

abt

13P)

N

N

N

Month 6

Month 5

Month 4

Month 3

Month 2

Month 1

Trial

10
11
12
13
14
15
16
17
18
19
20

Table A.63 Bootstrap Samples, Replication 3, SceralJ-Boat Kills

abt

13P)

N

13P)

13P)

N

Month 6

Month 5

Month 4

Month 3

Month 2

Month 1

Trial

10
11
12
13
14
15
16
17
18
19
20
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Table A.64 Bootstrap Samples, Replication 4, SceralJ-Boat Kills

abt

N

N

129}

Month 6

Month 5

Month 4

Month 3

Month 2

Month 1

Trial

10
11
12
13
14
15
16
17
18
19
20

Table A.65 Bootstrap Samples, Replication 5, ScerfalJ-Boat Kills

abt

13P)

N

N

N

Month 6

Month 5

Month 4

Month 3

Month 2

Month 1

Trial

10
11
12
13
14
15
16
17
18
19
20
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Table A.66 Bootstrap Samples, Replication 6, SceralJ-Boat Kills

abt

N

N

13P)

Month 6

Month 5

Month 4

Month 3

Month 2

Month 1

Trial

10
11
12
13
14
15
16
17
18
19
20

Table A.67 Bootstrap Samples, Replication 7, SceralJ-Boat Kills

abt

Month 6

Month 5

Month 4

Month 3

Month 2

Month 1

Trial

10
11
12
13
14
15
16
17
18
19
20
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Table A.68 Bootstrap Samples, Replication 8, ScerfalJ-Boat Kills

abt

Month 6

Month 5

Month 4

Month 3

Month 2

Month 1

Trial

10
11
12
13
14
15
16
17
18
19
20

Table A.69 Bootstrap Samples, Replication 9, ScerfalJ-Boat Kills

abt

Month 6

Month 5

Month 4

Month 3

Month 2

Month 1

Trial

10
11
12
13
14
15
16
17
18
19
20
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Table A.70 Bootstrap Samples, Replication 10, SterdaU-Boat Kills

abt

Month 6

Month 5

Month 4

Month 3

Month 2

Month 1

Trial

10
11
12
13
14
15
16
17
18
19
20

Table A.71 Bootstrap Samples, Replication 11, SterdaU-Boat Kills

abt

Month 6

Month 5

Month 4

Month 3

Month 2

Month 1

Trial

10
11
12
13
14
15
16
17
18
19
20
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Table A.72 Bootstrap Samples, Replication 12, SterdaU-Boat Kills

abt

Month 6

Month 5

Month 4

Month 3

Month 2

Month 1

Trial

10
11
12
13
14
15
16
17
18
19
20

Table A.73 Bootstrap Samples, Replication 13, SterdaU-Boat Kills

abt

Month 6

Month 5

Month 4

Month 3

Month 2

Month 1

Trial

10
11
12
13
14
15
16
17
18
19
20
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Table A.74 Bootstrap Samples, Replication 14, SterdaU-Boat Kills

abt

Month 6

Month 5

Month 4

Month 3

Month 2

Month 1

Trial

10
11
12
13
14
15
16
17
18
19
20

Table A.75 Bootstrap Samples, Replication 15, SterdaU-Boat Kills

abt

Month 6

Month 5

Month 4

Month 3

Month 2

Month 1

Trial

10
11
12
13
14
15
16
17
18
19
20
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Table A.76 Bootstrap Samples, Replication 16, SterdaU-Boat Kills

abt

Month 6

Month 5

Month 4

Month 3

Month 2

Month 1

Trial

10
11
12
13
14
15
16
17
18
19
20

Table A.77 Bootstrap Samples, Replication 17, SterdaU-Boat Kills

abt

Month 6

Month 5

Month 4

Month 3

Month 2

Month 1

Trial

10
11
12
13
14
15
16
17
18
19
20
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Table A.78 Bootstrap Samples, Replication 18, SterdaU-Boat Kills

abt

Month 6

Month 5

Month 4

Month 3

Month 2

Month 1

Trial

10
11
12
13
14
15
16
17
18
19
20

Table A.79 Bootstrap Samples, Replication 19, SterdaU-Boat Kills

abt

Month 6

Month 5

Month 4

Month 3

Month 2

Month 1

Trial

10
11
12
13
14
15
16
17
18
19
20
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Table A.80 Bootstrap Samples, Replication 20, SterdaU-Boat Kills

abt

Month 6

Month 5

Month 4

Month 3

Month 2

Month 1

Trial

10
11
12
13
14
15
16
17
18
19
20

224



A.5 Scenario 2 U-Boat Sightings

Table A.81 Bootstrap Samples, Replication 1, ScerfalJ-Boat Sightings

Trial Month 1 Month 2 Month 3 Month 4 Month 5 Month 6 abt
1 81 7 52 60 9§ 52 350
2 98 98 21 98 81 98 494
3 98 81 81 21 6( T 348
4 98 7 52 52 60 52 321
5 81 52 52 52 6( 60 357
6 81 81 98 52 1 52 371
7 60 98 98 21 1 21 306
8 7 52 98 81 21 98 35¢
9 52 52 52 52 21 98 327
10 60 98 60 57 81 60 4111
11 81 81 21 21 52 98 354
12 98 60 21 57 52 21 304
13 60 7 81 52 21 52 273
14 7 52 60 52 21 52 244
15 52 81 98 21 81 81 414
16 7 81 21 60 81 52 302
17 98 52 7 21 21 21 220
18 60 98 98 21 1 60 344
19 52 60 21 81 81 98 393
20 7 81 98 21 81 21 309
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Table A.82 Bootstrap Samples, Replication 2, ScerfalJ-Boat Sightings

Trial | Month 1 Month 2 |  Month 3 Month 4  Month 5 Month 6 abt
1 81 52 7 7 52 81 28D
2 52 98 52 98 6( 98 458
3 81 21 98 81 7 98 386
4 52 60 60 60 94 98 428
5 52 7 52 52 60 52 275
6 98 98 81 81 52 52 46Q
7 52 21 60 60 81 52 326
8 52 60 81 98 21 7 31p
9 52 98 21 60 81 81 398
10 98 81 81 60 98 60 478
11 7 7 7 60 98 52 231
12 98 98 60 52 7 98 413
13 81 7 52 81 1 7 23p
14 60 21 21 52 81 4 242
15 60 81 60 81 52 21 355
16 60 52 21 60 98 98 389
17 7 52 52 52 L 21 191
18 81 81 60 21 81 81 405
19 21 7 98 2] 6( 52 259
20 52 81 98 60 98 5p 441
Table A.83 Bootstrap Samples, Replication 3, ScerfalJ-Boat Sightings
Trial | Month 1 Month 2 |  Month 3 Month 4  Month 5 Month 6 abt
1 98 7 7 81 52 6( 30p
2 52 60 52 98 81 98 441
3 98 52 21 52 52 98 373
4 81 52 I 7 81 1 235
5 81 7 21 21 6( 21 211
6 81 60 52 52 21 21 287
7 21 60 52 7 7 98 24p
8 60 7 60 81 98§ 60 366
9 21 98 52 52 81 98 402
10 7 81 98 98 81 81 446
11 81 81 7 2] 94 52 340
12 21 60 81 7 21 52 242
13 7 21 98 98 1 52 283
14 52 52 7 60 6( 81 31P
15 52 21 81 60 98 60 372
16 60 52 81 52 7 52 304
17 81 81 7 7 60 52 288
18 52 98 21 7 98 98 374
19 98 7 21 7 60 21 214
20 98 7 52 2] 52 98 328
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Table A.84 Bootstrap Samples, Replication 4, SderfalJ-Boat Sightings

Trial | Month 1 Month 2 |  Month 3 Month 4  Month 5 Month 6 abt
1 81 81 21 2] 81 7 29p
2 52 21 52 60 52 81 318
3 98 98 81 60 98 7 44p
4 98 60 7 98 21 7 291
5 81 52 52 2] 6( 60 326
6 7 52 7 7 60 1 140
7 7 98 7 81 81 52 32p
8 21 60 52 98 21 60 31p
9 98 98 52 7 21 1 283
10 7 7 52 81 60 60 26[7
11 81 98 52 60 52 4 350
12 21 7 81 81 21 52 263
13 21 52 21 7 52 98 251
14 21 21 81 60 21 98 302
15 98 60 81 81 98 60 478
16 60 60 7 98 6( 7 29p
17 60 60 98 81 60 81 440
18 7 7 98 60 60 98 330
19 98 81 7 81 81 52 400
20 21 52 98 7 81 81 340
Table A.84 Bootstrap Samples, Replication 4, SacerfalJ-Boat Sightings
Trial | Month 1 Month 2 |  Month 3 Month 4  Month 5 Month 6 abt
1 98 60 81 81 81 60 46[1
2 7 60 60 7 98 21 258
3 21 60 7 21 7 52 168
4 21 60 98 2] 1 98 30p
5 60 81 21 81 98 7 348
6 52 60 98 2] 81 98 410
7 21 21 7 81 81 60 271
8 21 7 81 60 7 21 19y
9 52 52 60 2] 21 52 258
10 52 7 60 52 21 52 244
11 21 52 81 98 52 52 356
12 21 81 98 52 98 98 448
13 81 60 21 98 21 98 379
14 98 60 98 81 7 60 404
15 7 60 21 ) 9§ 81 274
16 60 52 81 52 81 98 424
17 52 52 21 81 81 21 308
18 98 21 60 98 60 4 344
19 7 52 60 2] 81 81 302
20 98 60 98 81 1 21 365
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Table A.85 Bootstrap Samples, Replication 5, ScerfalJ-Boat Sightings

Trial | Month 1 Month 2 |  Month 3 Month 4  Month 5 Month 6 abt
1 81 81 21 60 21 T 271
2 21 98 98 98 94 52 465
3 81 81 81 81 94 60 482
4 60 7 7 98 52 6( 284
5 60 98 81 98 21 T 36p
6 98 7 7 52 81 98 343
7 60 21 7 98 21 60 26\
8 98 60 21 81 94 60 418
9 60 7 7 7 81 1 169
10 7 52 60 81 81 52 333
11 98 7 52 98 94 52 405
12 60 81 21 21 21 60 264
13 21 98 81 21 98 ¥ 326
14 52 60 52 9§ 52 60 374
15 98 81 81 52 81 60 453
16 60 21 60 81 52 52 326
17 52 52 81 60 60 21 326
18 60 52 7 52 81 60 312
19 52 81 7 81 52 T 280
20 98 60 60 81 1 21 327
Table A.86 Bootstrap Samples, Replication 6, ScerfalJ-Boat Sightings
Trial | Monthl | Month2 | Month3| Month4] Month§  Month 6 @bt
1 81 81 21 7 21 98 300
2 98 81 7 2] 60 T 274
3 81 81 7 2] 21 60 271
4 52 98 81 60 1 T 30b
5 21 81 52 52 94 T 311
6 52 21 52 81 52 60 318
7 98 60 98 21 1 60 344
8 81 7 52 98 9§ 52 388
9 60 81 7 7 98 52 30b
10 98 98 21 81 52 ¥ 357
11 7 81 81 60 21 60 310
12 52 81 60 52 81 60 386
13 52 98 52 52 1 52 313
14 52 81 7 98 52 52 342
15 81 81 52 52 52 52 370
16 21 21 21 9§ 1 81 249
17 52 81 60 81 60 81 415
18 52 98 81 7 21 52 311
19 7 60 52 98 94 52 367
20 52 52 52 60 60 81 357
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Table A.87 Bootstrap Samples, Replication 7, ScerfalJ-Boat Sightings

Trial | Month 1 Month 2 |  Month 3 Month 4  Month 5 Month 6 abt
1 21 7 98 52 81 21 280
2 52 60 21 98 7 60 298
3 21 81 98 98 81 60 439
4 98 98 81 7 81 98 463
5 52 52 98 7 60 21 290
6 60 52 81 60 1 52 31p
7 60 21 60 52 7 52 25p
8 7 81 52 98 52 21 311
9 81 21 81 7 21 98 30p
10 52 52 7 81 21 81 294
11 21 21 98 7 52 98 297
12 98 60 81 60 81 5p 432
13 81 60 52 21 52 98 364
14 7 98 52 81 98 60 396
15 52 98 81 98 21 52 402
16 60 7 98 81 81 52 379
17 81 81 98 60 21 98 439
18 98 98 52 98 7 98 451
19 21 98 81 21 81 4 309
20 98 81 7 2] 52 7 266
Table A.88 Bootstrap Samples, Replication 8, SderfalJ-Boat Sightings
Trial | Month 1 Month 2 |  Month 3 Month 4  Month 5 Month 6 abt
1 21 21 60 81 52 60 295
2 98 98 52 98 6( 52 458
3 52 21 21 98 52 52 296
4 52 21 52 2] 52 52 250
5 21 60 21 7 7 1 1238
6 21 60 52 52 52 60 297
7 60 7 60 21 81 21 250
8 7 81 7 52 98 52 291
9 21 21 81 81 98 81 383
10 81 98 98 7 52 21 357
11 98 21 52 7 1 98 283
12 60 60 98 52 52 60 382
13 81 81 52 52 21 60 347
14 21 7 81 2] 98 21 249
15 60 7 7 60 81 52 26[7
16 7 7 7 21 81 98 221
17 98 98 52 98 98 98 542
18 52 21 81 98 21 81 354
19 21 81 81 98 7 98 386
20 81 21 7 7 52 60 228
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Table A.89 Bootstrap Samples, Replication 9, SderfalJ-Boat Sightings

Trial | Month 1 Month 2 |  Month 3 Month 4  Month 5 Month 6 abt
1 98 52 52 98 6( 98 458
2 60 21 81 52 7 52 273
3 81 81 52 52 21 81 368
4 52 52 98 L 81 21 311
5 21 81 98 60 81 60 401
6 60 52 7 52 7 21 199
7 21 7 52 81 21 52 234
8 7 21 21 81 81 7 218
9 21 21 60 7 81 98 288
10 81 7 21 21 L 21 158
11 21 21 81 1 L 52 18P
12 60 98 81 21 52 21 333
13 21 81 52 60 60 98 372
14 7 60 81 98 98 81 425
15 60 52 52 60 52 4 283
16 81 60 60 81 98 21 401
17 98 98 98 21 52 60 427
18 81 21 81 81 60 60 384
19 21 7 60 98 21 98 305
20 21 21 7 81 21 7 158
Table A.90 Bootstrap Samples, Replication 10, SterZaU-Boat Sightings
Trial | Month 1 Month 2 |  Month 3 Month 4  Month 5 Month 6 abt
1 60 98 98 7 7 1 27y
2 60 81 60 2] 52 52 326
3 21 52 81 7 7 21 18p
4 81 52 60 52 81 7 333
5 7 81 52 7 52 21 220
6 52 21 60 7 60 81 281
7 98 60 60 81 7 60 366
8 7 81 52 21 21 21 208
9 52 60 21 98 21 98 350
10 81 52 52 60 81 4 333
11 52 7 21 81 21 52 234
12 21 52 7 52 81 98 311
13 60 81 52 52 60 81 386
14 81 52 81 81 52 81 428
15 21 81 81 60 52 81 376
16 52 98 81 60 52 4 350
17 21 52 7 60 52 98 290
18 7 81 60 52 98 81 379
19 7 98 98 2] 98 81 408
20 7 98 52 52 6( 81 350
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Table A.91 Bootstrap Samples, Replication 11, SuerZaU-Boat Sightings

Trial | Month 1 Month 2 |  Month 3 Month 4  Month 5 Month 6 abt
1 21 60 7 52 1 98 245
2 7 60 7 81 7 1 169
3 21 21 52 7 60 98 25P
4 7 81 52 52 21 98 311
5 60 81 7 98 21 T 274
6 52 21 98 98 81 98 448
7 7 98 60 81 57 21 319
8 81 60 21 21 94 60 341
9 81 98 7 7 21 221
10 21 60 98 52 98 52 381
11 52 52 21 60 81 60 326
12 98 7 7 21 7 21 16
13 52 7 98 98 81 21 357
14 60 60 81 60 98 81 440
15 98 52 81 52 52 ¥ 342
16 21 60 81 9§ 98 ¥ 365
17 7 7 52 21 60 7 154
18 7 21 52 60 6( 21 221
19 7 98 98 52 6( 98 413
20 21 21 60 9§ 52 ¥ 259
Table A.93 Bootstrap Samples, Replication 13, SterZaU-Boat Sightings
Trial | Month 1 Month 2 |  Month 3 Month 4  Month 5 Month 6 abt
1 60 81 60 52 1 81 341
2 60 81 52 98 21 52 364
3 7 98 21 60 21 81 288
4 21 52 98 81 1 81 340
5 81 81 7 2] 9§ 98 386
6 7 60 60 52 9§ 81 358
7 60 21 60 98 81 52 372
8 21 98 98 98 1 98 420
9 98 81 21 7 9§ 81 386
10 81 52 21 7 6( 21 24P
11 98 81 21 81 52 ¥ 340
12 52 7 98 52 6( 52 321
13 21 60 52 21 60 52 266
14 98 98 7 7 81 21 31p
15 60 52 21 7 1 7 154
16 81 60 81 7 52 T 288
17 7 7 98 81 7 21 221
18 52 7 21 52 6( T 199
19 7 52 21 81 21 21 203
20 21 52 7 98 52 52 282

231



Table A.94 Bootstrap Samples, Replication 14, SterZaU-Boat Sightings

Trial | Month 1 Month 2 |  Month 3 Month 4  Month 5 Month 6 abt
1 98 21 21 98 6( 52 350
2 98 98 21 7 52 98 374
3 81 7 81 60 60 81 370
4 52 52 21 L 1 52 191
5 98 52 60 60 21 60 351
6 52 52 52 52 21 7 236
7 7 21 21 98 i 1 161
8 98 98 81 60 21 21 379
9 21 21 60 98 52 98 350
10 81 52 52 81 21 81 368
11 21 60 98 81 52 98 410
12 52 98 7 81 7 81 326
13 81 21 7 60 1 60 236
14 98 21 60 21 21 60 281
15 81 98 21 52 60 21 333
16 60 21 21 7 21 52 182
17 21 21 98 21 60 98 319
18 98 52 98 52 81 4 388
19 21 60 21 2] 21 4 151
20 60 52 60 81 60 98 411
Table A.95 Bootstrap Samples, Replication 15, SuerZaU-Boat Sightings
Trial | Month 1 Month 2 |  Month 3 Month 4  Month 5 Month 6 abt
1 98 81 81 81 6( 81 48P
2 98 81 60 52 81 21 398
3 21 21 7 7 1 81 144
4 52 98 I 7 1 81 25P
5 60 98 98 60 7 52 37p
6 60 98 81 2] 94 98 456
7 52 21 81 60 98 60 37R
8 21 81 7 52 21 60 24p
9 81 21 81 2] 6( 52 316
10 52 52 7 98 7 52 268
11 21 60 98 7 6( 98 344
12 98 52 81 98 52 98 479
13 7 7 60 60 21 7 16p
14 98 60 60 81 52 52 403
15 81 98 21 7 81 98 386
16 52 60 60 98 60 21 351
17 98 52 98 60 98 81 487
18 98 60 7 98 52 52 36/7
19 52 60 52 7 81 81 333
20 60 21 7 2] 1 21 13y
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Table A.96 Bootstrap Samples, Replication 16, SterZaU-Boat Sightings

Trial | Month 1 Month 2 |  Month 3 Month 4  Month 5 Month 6 abt
1 98 21 7 81 9§ 7 31p
2 52 60 60 52 52 98 374
3 98 7 98 81 7 52 348
4 52 52 60 81 81 52 378
5 52 52 7 81 7 21 220
6 60 81 60 7 60 7 27p
7 81 21 98 60 7 60 321
8 7 52 98 52 98§ 98 40p
9 60 98 60 2] 98 81 418
10 81 60 60 81 60 21 363
11 81 52 60 7 6( 81 341
12 98 21 81 52 7 7 266
13 21 52 60 52 98 81 364
14 52 98 60 81 60 21 372
15 98 21 81 98 21 60 379
16 21 52 81 52 60 4 273
17 81 81 60 60 98 81 461
18 81 98 21 7 1 52 266
19 52 98 81 98 81 21 431
20 52 81 60 7 81 81 36Q
Table A.97 Bootstrap Samples, Replication 17, SterZaU-Boat Sightings
Trial | Month 1 Month 2 |  Month 3 Month 4  Month 5 Month 6 abt
1 7 52 52 52 21 52 236
2 21 21 21 2] 81 7 17p
3 98 7 60 98 7 98 368
4 98 52 21 52 21 21 265
5 81 60 7 52 9§ 52 350
6 98 52 52 2] 81 98 402
7 81 60 81 98 98 7 42b
8 98 98 81 7 52 21 357
9 98 21 21 2] 98 98 357
10 60 52 21 60 52 52 297
11 52 7 52 98 1 7 228
12 7 52 21 60 21 60 221
13 7 7 52 52 21 81 220
14 21 21 98 52 81 21 294
15 52 98 7 81 52 81 371
16 98 98 7 2] 94 7 329
17 52 21 52 81 21 81 308
18 21 21 81 60 52 21 256
19 21 81 52 81 98 52 385
20 98 98 60 21 1 60 344
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Table A.98 Bootstrap Samples, Replication 18, SterZaU-Boat Sightings

Trial | Month 1 Month 2 |  Month 3 Month 4  Month 5 Month 6 abt
1 52 98 81 52 81 60 424
2 7 7 52 81 21 52 220
3 60 52 7 81 9§ 60 358
4 60 7 52 52 7 81 25p
5 81 81 60 98 21 98 439
6 52 52 21 81 94 21 325
7 21 21 21 52 81 81 2177
8 60 52 21 52 6( 98 343
9 52 81 81 7 81 60 36p
10 7 7 52 52 2] { 146
11 98 21 60 60 98 52 389
12 98 81 81 21 21 60 362
13 98 21 21 21 60 21 242
14 21 21 81 98 52 60 333
15 98 7 21 ) 81 81 295
16 21 21 52 98 60 52 304
17 7 98 60 60 81 60 366
18 52 52 52 21 21 60 258
19 81 21 7 52 81 81 328
20 60 81 98 52 98 60 449
Table A.99 Bootstrap Samples, Replication 19, SterZaU-Boat Sightings
Trial | Month 1 Month 2 |  Month 3 Month 4  Month 5 Month 6 abt
1 60 21 52 52 81 60 326
2 81 98 21 52 6( 21 333
3 7 7 52 98 7 21 192
4 81 98 60 52 52 21 36¢
5 81 7 60 81 52 21 30p
6 81 81 60 81 1 52 36p
7 98 52 7 81 98§ 60 396
8 60 7 81 98 21 60 321
9 21 60 21 7 7 81 19y
10 52 60 52 81 21 81 347
11 7 98 I 7 52 81 25p
12 98 81 52 60 81 21 393
13 21 21 7 60 1 60 176
14 60 52 81 60 81 8l 415
15 7 52 81 52 L 52 251
16 52 52 7 2] 21 98 251
17 60 98 7 60 52 81 358
18 7 52 81 2] 21 21 203
19 81 52 98 60 98 98 487
20 98 60 81 60 1 98 404
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Table A.100 Bootstrap Samples, Replication 20, &der? U-Boat Sightings

Trial | Month 1 Month 2 |  Month 3 Month 4/  Month 5 Month 6 abt
1 60 60 60 98 1 81 366
2 7 60 98 21 21 60 26[7
3 21 21 60 52 6( 7 221
4 60 52 60 98 6( 21 351
5 81 98 21 7 21 7 23p
6 52 21 98 81 52 98 402
7 60 52 60 60 21 7 26D
8 98 60 81 7 52 7 30p
9 60 60 98 81 7 81 387
10 52 52 98 60 98 98 458
11 98 7 21 60 81 21 288
12 60 21 52 81 81 98 393
13 7 7 60 81 7 81 248
14 81 81 98 21 60 4 348
15 21 21 7 2] 21 52 143
16 52 52 60 60 98 21 343
17 98 21 7 2] 7 81 23p
18 21 52 60 21 98 21 273
19 98 98 98 7 81 81 463
20 60 60 81 52 1 7 26)7
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A.6 Scenario 2 U-Boat Kills

Table A.101 Bootstrap Samples, Replication 1, Ster2aU-Boat Kills

Trial Month 1 Month 2 Month 3 Month 4 Month 5 Month 6 abt
1 4 4 1 2 1 13 25
2 4 13 1 13 5 2 38
3 4 4 1 5 7 2 23
4 1 2 7 5 2 13 30
5 2 7 1 1 4 1 16
6 7 1 5 1 2 5 21
7 2 4 1 5 1 13 26
8 1 5 1 5 7 4 23
9 13 5 5 7 5 7 42

10 13 13 5 1 5 5 42
11 4 1 1 2 1 2 11
12 1 7 1 1 1 2 13
13 13 5 13 1 2 1 35
14 13 4 2 5 2 1 27
15 2 7 13 4 13 13 52
16 4 1 5 13 13 1 37
17 13 2 13 13 1 1 43
18 4 7 13 5 1 7 37
19 4 4 5 7 2 7 29
20 5 7 7 7 7 13 46

236




Table A.102 Bootstrap Samples, Replication 2, SterZaU-Boat Kills

Trial Month 1 Month 2 Month 3 Month 4 Month 5 Month 6 abt
1 13 7 1 13 2 5 4]
2 4 2 1 1 2 2 12
3 4 7 13 2 1 5 32
4 1 2 5 4 1 4 17
5 4 1 2 5 13 5 3(
6 2 13 5 13 2 7 42
7 4 7 4 2 2 4 23
8 2 13 5 5 1 4 3(
9 13 1 1 2 5 13 35
10 1 5 7 7 2 4 26
11 13 13 2 5 5 2 40
12 5 1 7 2 7 5 27
13 5 5 7 5 4 5 31
14 1 1 2 5 5 7 21
15 13 13 7 4 2 1 46
16 13 5 7 5 1 1 38
17 2 1 2 4 13 13 35
18 4 7 4 2 4 5 26
19 2 5 13 5 4 5 34
20 13 1 7 5 5 1 32
Table A.103 Bootstrap Samples, Replication 3, SterZzaU-Boat Kills
Trial Month 1 Month 2 Month 3 Month 4 Month 5 Month 6 abt
1 2 2 5 5 13 4 31
2 7 1 7 1 13 1 3(
3 7 7 1 4 13 13 4%
4 7 5 1 13 4 2 32
5 7 4 5 7 4 2 29
6 7 13 4 13 13 13 63
7 2 13 13 13 1 4 52
8 1 1 4 2 5 2 15
9 7 2 4 13 2 4 32
10 13 7 2 5 2 4 33
11 2 7 13 13 4 4 43
12 13 2 1 4 13 2 35
13 1 4 2 5 4 5 21
14 13 7 2 5 1 5 33
15 13 7 2 4 1 1 28
16 1 2 1 4 7 5 2(
17 7 4 13 7 1 1 39
18 7 5 1 5 4 13 35
19 5 5 13 7 13 1 50
20 2 13 1 13 1 13 48
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Table A.104 Bootstrap Samples, Replication 4, Ster2aU-Boat Kills

Trial Month 1 Month 2 Month 3 Month 4 Month 5 Month 6 abt
1 7 4 7 7 4 1 30
2 2 13 4 1 2 5 27
3 1 1 7 4 4 5 22
4 2 4 1 5 5 13 3(
5 2 2 2 13 1 4 24
6 13 4 5 7 4 7 4(
7 2 13 1 1 7 4 28
8 7 5 1 1 2 13 29
9 13 2 5 5 7 7 39
10 1 4 13 7 13 13 51
11 7 1 1 4 7 5 25
12 5 5 13 5 2 1 37
13 5 2 2 2 5 2 1§
14 2 7 7 2 2 4 24
15 1 1 7 13 4 1 27
16 13 1 1 2 2 5 24
17 7 7 5 7 2 7 35
18 2 13 5 5 7 1 33
19 13 4 4 7 7 1 42
20 7 5 5 13 7 4 41
Table A.105 Bootstrap Samples, Replication 5, Ster2zaU-Boat Kills
Trial Month 1 Month 2 Month 3 Month 4 Month 5 Month 6 abt
1 7 13 7 1 13 1 42
2 7 13 1 2 7 7 37
3 7 5 1 2 7 7 29
4 7 13 7 1 2 7 37
5 5 4 1 4 4 5 23
6 7 1 7 5 1 4 25
7 1 2 13 13 7 13 49
8 2 5 7 2 4 1 21
9 4 1 4 4 5 4 22
10 13 2 4 7 5 g 36
11 5 7 7 4 2 2 27
12 4 13 7 2 2 13 41
13 7 1 7 13 4 4 36
14 7 4 5 7 7 2 32
15 1 13 7 7 2 4 34
16 13 1 1 2 4 1 22
17 4 2 13 7 5 4 35
18 7 5 4 7 13 5 4]
19 1 4 1 5 13 13 37
20 1 13 7 7 7 4 39
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Table A.106 Bootstrap Samples, Replication 6, Ster2zaU-Boat Kills

Trial Month 1 Month 2 Month 3 Month 4 Month 5 Month 6 abt
1 4 13 13 5 4 1 46
2 1 13 4 13 4 1 36
3 1 5 13 7 7 4 37
4 4 13 5 7 2 5 36
5 5 7 7 7 5 13 44
6 1 1 5 7 13 4 31
7 7 13 5 7 5 4 41
8 1 13 1 13 5 1 40
9 7 1 5 7 7 1 28
10 4 4 2 1 1 2 14
11 1 7 2 1 4 13 28
12 1 2 2 7 7 5 24
13 7 4 4 2 7 4 28
14 13 7 5 2 1 Z 30
15 4 13 7 4 7 1 42
16 5 2 1 13 4 4 29
17 13 1 4 4 13 5 40
18 2 13 1 7 4 1 34
19 5 13 5 5 2 37
20 7 7 7 2 2 7 32
Table A.107 Bootstrap Samples, Replication 7, Ster2aU-Boat Kills
Trial Month 1 Month 2 Month 3 Month 4 Month 5 Month 6 abt
1 5 13 1 1 7 4 31
2 2 13 1 5 5 7 33
3 13 7 13 13 4 13 63
4 5 1 5 5 13 1 3(
5 5 5 7 1 2 2 22
6 5 1 5 13 7 1 32
7 2 1 7 7 7 7 31
8 4 4 7 13 1 5 34
9 13 5 1 7 13 13 52
10 2 4 5 7 2 13 33
11 5 4 1 1 2 1 14
12 5 7 5 7 5 7 36
13 4 5 7 2 13 Z 33
14 7 5 1 7 5 2 27
15 13 13 5 13 ] 1 46
16 7 1 4 13 7 2 34
17 13 4 5 1 13 5 41
18 5 1 1 2 13 2 24
19 1 2 5 5 5 7 25
20 13 7 13 4 5 1 43
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Table A.108 Bootstrap Samples, Replication 8, SterzaU-Boat Kills

Trial Month 1 Month 2 Month 3 Month 4 Month 5 Month 6 abt
1 5 7 13 4 4 4 37
2 7 7 13 4 13 4 48
3 7 2 7 1 2 2 21
4 2 2 1 1 7 4 17
5 7 13 5 7 1 5 38
6 2 13 2 7 5 4 33
7 13 1 7 7 5 2 35
8 1 7 2 13 2 7 32
9 5 4 7 1 4 2 23
10 7 13 5 7 4 13 49
11 7 4 7 2 1 1 22
12 7 13 5 4 7 1 43
13 4 13 13 5 2 13 50
14 7 4 5 2 7 4 29
15 13 7 1 2 7 1 37
16 2 13 2 1 2 4 24
17 2 1 4 1 4 5 17
18 2 2 5 1 4 5 19
19 13 13 13 2 g 1 4y
20 13 4 2 13 1 7 35
Table A.109 Bootstrap Samples, Replication 9, SterZzaU-Boat Kills
Trial Month 1 Month 2 Month 3 Month 4 Month 5 Month 6 abt
1 7 2 7 5 13 13 47
2 2 4 1 13 4 1 25
3 4 7 7 4 2 13 37
4 2 1 13 4 5 5 3(
5 4 1 13 13 1 3 45
6 13 7 1 5 4 5 35
7 4 13 5 1 13 2 38
8 5 4 13 2 5 5 34
9 5 13 4 2 4 2 3(
10 4 4 2 1 2 1 14
11 13 1 4 5 4 13 40
12 4 5 7 7 4 1 28
13 1 4 7 5 7 7 31
14 1 4 5 1 5 5 21
15 7 2 7 13 1 1 37
16 13 7 2 5 2 4 33
17 1 2 5 7 4 2 21
18 13 2 7 13 1 4 46
19 7 4 13 4 2 1 31
20 7 1 5 7 2 7 29
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Table A.110 Bootstrap Samples, Replication 10, &ier? U-Boat Kills

Trial Month 1 Month 2 Month 3 Month 4 Month 5 Month 6 abt
1 13 13 7 13 13 T 66
2 2 2 1 4 13 13 35
3 1 1 13 7 1 2 25
4 4 5 7 4 2 5 217
5 7 13 4 7 13 2 46
6 5 13 4 4 13 5 44
7 1 13 7 5 7 2 35
8 1 2 1 7 2 2 15
9 7 5 5 13 2 1 33
10 1 5 2 7 4 4 23
11 13 5 4 4 13 1 40
12 1 1 5 4 13 1 25
13 2 1 1 1 2 13 20
14 1 7 7 13 5 5 38
15 5 7 13 2 1 4 32
16 5 1 5 2 2 7 22
17 7 5 7 2 7 13 4]
18 5 7 5 5 2 1 25
19 4 2 1 13 7 1 28
20 13 2 5 5 7 4 36
Table A.111 Bootstrap Samples, Replication 11, &ier? U-Boat Kills
Trial Month 1 Month 2 Month 3 Month 4 Month 5 Month 6 abt
1 4 2 7 7 4 7 31
2 5 13 1 13 7 1 40
3 1 7 7 13 2 13 43
4 2 1 13 13 7 5 4]
5 2 13 7 1 2 13 38
6 7 4 13 1 1 1 27
7 13 2 2 7 4 1 29
8 5 7 4 1 4 1 22
9 13 13 1 13 3 T 60
10 5 2 13 2 13 5 40
11 7 13 4 7 7 13 51
12 7 5 2 1 4 13 32
13 1 13 4 2 5 1 26
14 5 5 7 4 1 5 27
15 5 4 4 1 4 4 22
16 5 13 4 2 5 13 42
17 4 1 13 4 1] 13 36
18 1 1 2 4 2 4 14
19 5 7 13 7 1 4 37
20 4 1 13 2 1 1 22
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Table A.112 Bootstrap Samples, Replication 12, &ier? U-Boat Kills

Trial Month 1 Month 2 Month 3 Month 4 Month 5 Month 6 abt
1 5 7 7 1 5 7 32
2 5 2 7 7 5 4 30
3 5 5 2 7 5 1 25
4 13 5 4 5 2 2 31
5 4 2 4 13 4 2 29
6 5 5 13 13 2 1 39
7 2 2 7 1 2 13 27
8 4 5 2 5 13 7 34
9 1 2 5 5 13 4 3(
10 1 1 4 7 5 4 22
11 4 5 2 1 7 4 23
12 7 13 5 2 13 7 42
13 2 7 7 4 2 13 35
14 2 4 7 13 1 1 28
15 4 13 2 5 13 4 41
16 7 5 1 4 7 2 26
17 2 7 5 13 7 4 38
18 13 4 2 4 5 4 32
19 4 5 1 4 4 13 31
20 7 7 1 1 4 4 24
Table A.113 Bootstrap Samples, Replication 13, &ter? U-Boat Kills
Trial Month 1 Month 2 Month 3 Month 4 Month 5 Month 6 abt
1 13 7 13 5 2 4 44
2 7 13 13 7 2 2 44
3 7 1 7 13 4 4 36
4 1 2 13 4 2 2 24
5 4 1 5 1 4 7 22
6 7 1 7 2 13 1 31
7 2 2 7 7 4 2 24
8 1 7 13 2 2 2 27
9 13 5 5 4 7 5 39
10 13 1 7 7 4 2 34
11 13 1 7 5 5 5 36
12 7 7 5 7 5 7 38
13 2 7 7 5 1 7 29
14 5 1 7 13 5 1 38
15 5 7 4 4 13 1 40
16 4 4 5 1 1 5 2(
17 2 7 7 13 4 5 38
18 2 1 13 1 5 5 27
19 5 2 1 7 13 4 32
20 4 5 4 7 13 13 46
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Table A.114 Bootstrap Samples, Replication 14, &ter? U-Boat Kills

Trial Month 1 Month 2 Month 3 Month 4 Month 5 Month 6 abt
1 13 1 1 1 4 7 27
2 1 5 7 7 2 7 29
3 7 5 2 13 1 4 32
4 4 2 7 2 13 13 41
5 7 4 4 2 2 2 21
6 1 5 5 2 5 1 19
7 2 2 2 5 2 4 17
8 4 2 13 13 13 ] 46
9 4 2 4 7 4 13 34
10 7 5 13 7 1 4 37
11 5 1 1 2 7 1 17
12 13 13 4 4 2 7 38
13 5 7 5 4 2 2 25
14 2 5 7 5 4 2 25
15 7 1 2 13 1 1 31
16 2 5 2 5 4 2 2(
17 2 5 4 13 4 1 29
18 7 5 13 2 1 1 35
19 1 2 1 7 1 2 14
20 7 13 7 7 7 1 42
Table A.115 Bootstrap Samples, Replication 15, &ter? U-Boat Kills
Trial Month 1 Month 2 Month 3 Month 4 Month 5 Month 6 abt
1 2 7 5 13 4 5 36
2 2 7 7 1 4 5 264
3 4 7 2 1 1 13 28
4 7 13 13 4 4 5 46
5 1 13 13 2 4 5 38
6 2 2 2 7 1 13 27
7 7 4 1 4 7 13 36
8 1 7 2 7 7 2 26
9 4 5 7 7 5 13 41
10 2 4 2 4 2 5 19
11 13 13 4 13 ] 4 48
12 5 2 2 4 2 13 28
13 2 7 5 4 2 13 33
14 1 5 5 5 13 1 36
15 13 7 2 2 2 Z 28
16 13 1 7 5 1 1 34
17 2 2 2 1 5 1 13
18 13 4 5 2 5 4 33
19 13 5 4 2 13 13 50
20 7 1 4 2 1 5 2(
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Table A.116 Bootstrap Samples, Replication 16, &ier? U-Boat Kills

Trial Month 1 Month 2 Month 3 Month 4 Month 5 Month 6 abt
1 1 2 7 5 4 7 264
2 7 2 5 13 1 5 33
3 13 7 13 2 5 13 53
4 13 5 2 7 5 13 4%
5 4 7 7 1 13 7 39
6 5 4 7 5 2 4 217
7 5 2 7 4 4 1 23
8 4 1 1 13 4 7 3(
9 13 2 2 7 7 4 34
10 1 5 2 13 13 4 38
11 2 2 1 2 13 13 33
12 1 5 2 1 7 4 2(
13 4 1 7 2 1 13 28
14 7 1 2 7 1 1 19
15 1 1 2 2 5 4 15
16 1 2 2 4 7 7 23
17 4 13 4 13 5 4 43
18 1 1 5 1 7 4 19
19 5 2 7 7 13 1 35
20 1 4 1 13 13 1 33
Table A.117 Bootstrap Samples, Replication 17, &ier? U-Boat Kills
Trial Month 1 Month 2 Month 3 Month 4 Month 5 Month 6 abt
1 7 1 13 7 2 13 43
2 13 1 1 1 4 7 27
3 1 4 2 5 4 7 23
4 2 5 13 13 4 5 42
5 5 5 5 1 2 5 23
6 5 2 7 4 2 2 27
7 4 7 2 2 1 7 23
8 13 7 7 2 13 1 43
9 2 1 13 13 13 1 43
10 13 2 4 7 13 2 41
11 2 2 4 2 4 4 18
12 4 4 7 1 7 1 24
13 7 13 2 13 1 1 49
14 5 1 4 13 13 2 38
15 5 4 2 7 5 5 28
16 2 1 13 1 7 g 29
17 2 7 13 4 4 Z 32
18 4 7 4 7 2 7 31
19 5 13 7 1 13 4 43
20 1 5 4 7 2 1 2(
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Table A.118 Bootstrap Samples, Replication 18, &ter? U-Boat Kills

Trial Month 1 Month 2 Month 3 Month 4 Month 5 Month 6 abt
1 4 1 13 7 5 5 35
2 2 1 13 1 2 2 21
3 5 13 1 5 5 13 42
4 4 13 7 1 4 4 33
5 2 13 1 5 13 4 38
6 13 7 1 5 4 7 37
7 4 2 5 7 2 5 25
8 5 4 5 1 5 2 22
9 7 1 2 7 13 1 31
10 2 2 13 2 2 4 25
11 4 1 1 13 7 13 39
12 1 5 4 2 4 13 29
13 7 2 1 4 4 1 19
14 7 1 4 7 2 7 28
15 4 5 1 5 4 13 32
16 1 1 1 5 7 4 19
17 7 1 7 13 4 1 33
18 1 2 7 4 7 1 22
19 4 5 2 4 5 13 33
20 13 5 1 13 7 1 40
Table A.119 Bootstrap Samples, Replication 19, &ter? U-Boat Kills

Trial Month 1 Month 2 |  Month 3 Month 4  Month 5 Month 6 abt |
1 13 7 5 13 5 5 48
2 4 7 5 7 13 2 34
3 4 5 7 1 13 2 32
4 1 7 13 2 2 1 24
5 5 4 7 4 5 13 38
6 13 2 13 7 7 1 43
7 7 2 5 1 7 13 35
8 4 2 1 1 5 13 24
9 4 1 5 13 13 3 49
10 5 13 4 4 2 5 33
11 5 13 7 5 13 4 4y
12 13 5 5 1 4 g 33
13 1 1 1 5 1 2 11
14 1 5 4 5 5 2 22
15 4 2 13 13 3 Y. 39
16 1 7 4 5 7 1 25
17 13 5 1 4 13 13 49
18 2 1 5 7 2 5 22
19 13 1 13 4 7 2 40
20 7 1 4 5 7 7 31
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Table A.120 Bootstrap Samples, Replication 20, &ier? U-Boat Kills

Trial Month 1 Month 2 Month 3 Month 4 Month 5 Month 6 abt
1 5 2 7 2 5 4 25
2 4 7 1 13 7 1 33
3 4 7 5 7 1 4 2§
4 1 5 1 5 5 2 19
5 5 7 4 4 13 4 37
6 2 5 5 13 4 13 42
7 4 4 13 1 7 2 31
8 4 13 13 4 7 g 46
9 2 1 13 2 1 5 24
10 2 13 2 5 7 g 34
11 5 5 4 5 7 1 27
12 4 2 13 2 5 g 31
13 1 5 2 5 1 1 15
14 7 1 7 13 4 4 36
15 5 1 7 1 1 7 22
16 2 5 1 7 13 1 29
17 2 13 1 4 1 13 34
18 1 7 2 13 5 7 35
19 5 4 7 13 7 4 40
20 13 5 5 2 5 7 37
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Appendix B. Model Implementation

Appendix B contains specific details about the enpéntation of the Bay of
Biscay simulation in the agent-based paradigmureidd.1 shows the Java inheritance of

the major component classes.

java.lang.Object

®
® ‘e °
— Agent , . . . .
Bomber java.util.Vector  java.util.EventObject
UBoat
_ bummy Agent SeaPort I— CalendarEvent
— FranceSpain AirBase .
_ Ireland NorthAtlantic
— GreatBritain

— SignificantLocation
AircraftAttack
AircraftSighting
DeadUBoat

— BayCalendar

— Bomberlinstaller

— BomberVariables

— UBoatinstaller

— UBoatVariables

— CalendarListenerAdapter

— RandomNumberGenerator

— Statistic

TimeDependentStatistic
IncrementalStatistic

* javax.swing.JPanel
L Field

Figure B.1 Simulation Class Inheritance Diagram

The remaining sections of Appendix B illustrate timplementation of specific

portions of the Bay of Biscay agent-based simutatidhe flow diagrams are intended to
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augment the discussions of the simulation impleatent within this document and aid

follow-on research efforts that attempt to recrélageresults presented.

B.1 Aircraft Agent Algorithms

Figures B.2 — B.4 present the majority of the athons responsible for the
aircraft agents’ decisions and actions. Implenmgntihe Runnable interface, aircraft
agent code overrides the run method to providmdisidual thread with instructions.
Figure B.2 details the run method, which requestsssion to act from the simulation
clock manager (the Field object). Except for climeghior maintenance cancellations if
the agent is located at the airbase, the run mgihsskes control to the update method for

aircraft activity.

The most notable aspect of the run method occuenlie aircraft agent requests
permission to act before the simulation clock lehed the agent’s scheduled action
time. In this case, the Field object, which colsttbe simulation clock, puts the agent
thread to sleep. This is an essential aspecieddithulation because it prevents the agent
from repeatedly attempting to act, thereby monapaji the CPU and preventing other
agents from acting. When the Field object advatioesimulation clock, the sleeping

agents are notified, and they can request permigsiact again.
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Thread = null?
(simulation over)

\
Yes

Figure B.2 Bomber Agent Run Method Algorithm

Figure B.3 details the aircraft agent’s update methThe activities and decisions
represented in Figure B.3 were sufficiently dethitethe text of this document.

However, the flow diagram shows the precedenclef/arious decisions and actions.
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Figure B.3 Bomber Agent Update Method Algorithm

Finally, Figure B.4 details the method used to meige whether or not an aircraft

agent detects a U-Boat within its effective seaiesige. The aircraft checks its range to
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each U-Boat in the simulation to determine whethamot it is within the combined
sensor sweep width. If the U-Boat is outside theep width, then the aircraft checks the
next U-Boat. However, if the U-Boat is within teeeep width, then the aircraft makes a
random draw against the computed probability oécsin [McCue, 1990]. If a U-Boat

is detected, then the aircraft immediately stopscdeng for others that may be in the
area. Therefore, only the location of the firsBbat detected by an aircraft will be

discovered on any given aircraft sortie.
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Figure B.4 Bomber Agent U-Boat Detection Algorithm
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B.2 U-Boat Agent Algorithms

Figures B.5 — B.6 present the majority of the attons responsible for the U-
Boat agents’ decisions and actions. ImplementiegRunnable interface, U-Boat agent
code overrides the run method to provide its irdlial thread with instructions. Figure
B.5 details the run method, which requests peromss act from the simulation clock
manager (the Field object). Though the update oukeitn Figure B.6 contains the
majority of the agent decision/action code, themathod has the job of setting the goal
coordinates of U-Boat agents when entering theddiscay from either operations in

the North Atlantic or port.

Like the aircraft agent run method, a U-Boat ageqgtiesting permission to act at
a time later than the current simulation clock eakiput to sleep. When the Field object
advances the simulation clock, the sleeping agaetsotified, and they can request

permission to act again.
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Figure B.5 U-Boat Agent Run Method Algorithm

Figure B.6 details a U-Boat agent’s update methblak activities and decisions
represented in Figure B.6 were sufficiently dethitethe text of this document.

However, the flow diagram shows the precedenclef/arious decisions and actions.
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Figure B.6 U-Boat Agent Update Method Algorithm
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B.3 Simulation Environment

The Field class was the simulation environmenthictvthe system agents were
situated. The agents within the simulated systeed & coordinate system relative to the
Field object’s JPanel coordinates. Classes reptiagethe landmasses surrounding and
defining the Bay of Biscay — Ireland, GreatBritaamd FranceSpain (Figure B.1) —
further define the agents’ environment. Additidpathe Field object maintained the
system clock and served as a broker for the ageartsing to act. It is this function that

is shown in the flow diagram of Figure B.7.
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Figure B.7 Field getMinUpdate Method Algorithm Used to Advance the Simulation

Clock and Control Agent Timing

When requesting permission to act, the Field objeadtes several calculations.
First, it determines the nearest (in the sensatofé) time any agent is scheduled to act

and the number of agents that are scheduled fotitha. If the nearest time is later than
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the current simulation clock time, then the simolatclock is advanced and all sleeping
agents are notified (awoken). If not, the requgstigent’s schedule is compared to the
simulation clock. If the scheduled time is latie thread is told to sleep (and returns
false); otherwise, the agent is given permissioacta(i.e. returns true). This system
prevents an agent from acting prior to its scheditirae and also allows for a single
request during any simulation time increment (iagbice speeding up simulation run

time significantly).
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